نوع مقاله : پژوهشی

نویسنده

دکتری، فیزیک، دانشگاه آزاد اسلامی واحد خرم آباد، خرم آباد، ایران

چکیده

بر پایه نظریه تابعی چگالی، خواص الکترونی، مغناطیسی و اپتیکی ترکیب تمام‌هویسلر Cr2ScSb مورد بررسی قرار گرفته است. این ترکیب در ثابت شبکه تعادلی برای منحنی چگالی حالت‌ها یک گاف نیم‌فلزی به اندازه 07/0 الکترون‌ولت دارد اما در ساختار نواری گاف انرژی مشاهده نمی‌شود. این ترکیب در حالت فرومغناطیس پایدار می‌باشد. Cr2ScSb دارای مغناطش کل 4 مگنتون بور می‌باشد و از رابطه اسلیتر-پائولینگ پیروی می‌کند. بررسی خواص اپتیکی نشان می‌دهد که این ترکیب برای استفاده به عنوان جاذب امواج الکترومغناطیسی گزینه مناسبی است.

کلیدواژه‌ها

[1] N. Kervan, S. Kervan, Half-metallic properties in the Fe2TiP full-Heuslercompound, Intermetallics 37 (2013) 88-91.
[2] O. Canko, F. Ta¸skin, M. Ati¸s, N. Kervan, S. Kervan, Magnetism and halfmetallicity in the Fe2ZrP Heusler alloy, J. Supercond. Nov. Magn. 29 (2016) 1-6.
[3] X.D. Xu, Z.X. Chen et al. Microstructure, magnetic and transport properties of a Mn2CoAl Heusler compound, Acta Materialia 176 (2019) 33-42.
[4] Rai, D.P., Thapa, R.K. (2014). Study of electronic, magnetic, optical and elastic properties of Cu2MnAl a gapless full Heusler compound. J. Alloys. Compd. 612, 355–360.
[5] A. Birsan, V. Kuncser, First principle investigations of the structural, electronic and magnetic properties of predicted new zirconium based full-Heusler compounds, Zr2MnZ (Z=Al, Ga and In), J. Mang. Mang. Mat. 406 (2016) 282–288.
[6] I. Asfour, H. Rached, S. Benalia, D. Rached, Investigation of electronic structure, magnetic properties and thermal properties of the new half-metallic ferromagnetic full-Heusler alloys Cr2GdSi1-xGex: an ab-initio study, J. Alloys. Compd. 676 (2016) 440– 451.
[7] F. Bagverdi, F. Ahmadian, First principles study of half-metallic ferromagnetism of the full-Heusler compounds RbSrX2 (X = C, N, and O), J. Supercond. Nov. Magn. 28 (2015) 2773–2781.
[8] Huang, W., Wang, X., Chen, X., Lu, W., Damewood, L., Fong, C.Y. (2015). Structural and electronic properties of half-Heusler alloys PtXBi (with X=Mn, Fe, Co and Ni) calculated from first principles. J. Magn. Magn. Mat. 377, 252–258.
[9] Lakdja, A., Rozale, H., Chahed, A., Benhelal, O. (2015). Ferromagnetism in the half-Heusler XCsBa compounds from first-principles calculations (X = C, Si, and Ge). J. Alloys. Compd. 564, 8–12.
[10] Behbahani, M.A., Moradi, M., Rostami, M., Davatolhagh, S. (2016). First principle study of structural, electronic and magnetic properties of half-Heusler IrCrZ (Z=Ge, As, Sn and Sb) compounds. J. Phys. Chem. Solids 92, 85–93.
[11] Checca, N.R., Caraballo-Vivas, R.J., Torrão, R., Rossi, A., Reis, M.S. (2017). Phase composition and growth mechanisms of half-metal Heusler alloy produced by pulsed laser deposition: from core-shell nanoparticles to amorphous randomic clusters. Mater. Chem. Phys. 196,103–108.
[12] Balke, B., Fecher, G., Felser, C. (2013). New Heusler compounds and Their Properties, in: C. Felser, G.H. Fecher (Eds.), Springer, Berlin, 15–43 Spintronic.
[13] Abdullahi, Y.Z., Yoon, T.L., Halim, M.M., Hashim, M.R., Lim, T.L. (2018).  First-principles investigation of graphitic carbon nitride monolayer with embedded Fe atom. Surf. Sci. 667, 112–120.
[14] Torosyan, G., Keller, S., Scheuer, L., Beigang, R., Papaioannou, E.T. (2018). Optimized spintronic terahertz emitters based on epitaxial grown Fe/Pt layer structures. Sci. Rep. 8, 1311.
[15] J. Jalilian, Comment on ‘Study of electronic, magnetic, optical and elastic properties of Cu2MnAl a gapless full Heusler compound, J. Alloys. Compd. 626 (2015) 277–279.
[16] Khandy, S.A., Islam, I., Gupta, D. C., Laref, A. (2019). Full Heusler alloys (Co2TaSi and Co2TaGe) as potential spintronic materials with tunable band profiles. J. of Solid State Chemistry 270, 173-179.
[17] M. Moradi, N. Taheri, M. Rostami, Structural, electronic, magnetic and vibrational properties of half-Heusler NaZrZ (Z = P, As, Sb) compounds, Physics Letters A 382 (2018) 3004-3011.
[18] Watts, S.M., Wirth, S., Von Molnar, S., Barry, A., Coey, J.M.D. (2000). Evidence for two-band magnetotransport in halfmetallic chromium dioxide. Phys. Rev. B 61, 9621–9628.
[19] Kim, T.W., Jeon, H.C., Kang, T.W., Lee, H.S., Lee, J.Y., Jin, S. (2006). Microstructural and magnetic properties of zinc-blende MnAs films with half metallic characteristics grown on GaAs (100) substrates. Appl. Phys. Lett. 021915, 88.
[20] Shekhar, C., Ouardi, S., Fecher, G.H., Nayak, A.K., Felser, C., Ikenaga, E. (2012). Electronic structure and linear magnetoresistance of the gapless topological insulator PtLuSb. Appl. Phys. Lett. 100, 252109.
[21] Jourdan, M., Minár, J., Braun, J., Kronenberg, A., Chadov, S., Balke, B., Ebert, H. (2014). Direct observation of half-metallicity in the Heusler compound Co2MnSi. Nat. Commun. 5, 3974.
[22] Parkin, S. S. P. et al. (1999). Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited). Appl. Phys. 85, 5828.
[23] Jain, R., Lakshmi, N., Jain, V.K., Jain, V., Chandra, A.R., Venugopalan, K. (2018). Electronic structure, magnetic and optical properties of Co2TiZ (Z = B, Al, Ga, In) Heusler alloys. J. Magn. Magn Mater. 448, 278.
[24] Zutic, I., Fabian, J. and Das Sarma, S. (2004). Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323.
[25] Jain, V. K., Lakshmi, N., Jain, R., Jain, V., Chandra, A. R., Venugopalan, K. (2017). Electronic structure, magnetic and optical properties of quaternary Fe2−x Cox MnAl Heusler alloys. J. Magn. Magn Mater 52, 6800–6811.
[26] Gao, G.Y., Yao, K.L., Sasioglu, E., Sandratskii, L.M., Liu, Z.L.,Jiang, J.L. (2007). Half-metallic ferromagnetism in zinc-blende CaC, SrC, and BaC from first principles. Phys. Rev. B. 75, 174442– 174448.
[27] Gao, G.Y., Yao, K.L., Song, M.H., Liu, Z. L. (2011). Half-metallic ferromagnetism in rocksalt and zinc-blende MS (M = Li, Na and K): a first-principles study. J. Magn. Magn. Mater. 323, 2652–2657.
[28] M. Safavi, M. Moradi, M. Rostami, Structural, Electronic and Magnetic Properties of NaKZ (Z = N, P, As, and Sb) Half-Heusler Compounds: a First-Principles study, J. Superconduct. Nov. Magn. 30 (2016) 989-997.
[29] K. Sato, et al. Exchange interactions in diluted magnetic semiconductors, J. Phys. Condens. Matter 16 (2004) S5491–S5497.
[30] J. C. Slater, The Ferromagnetism of Nickel. II. Temperature Effects, Phys. Rev. 49 (1936) 931-937.
[31] L. Pauling, The Nature of the Interatomic Forces in Metals, Phys. Rev. 54 (1938) 899-904.
[32] A. Delin, O. Eriksson, R. Ahuja, B. Johansson, M.S.S. Brooks, T. Gasche, S. Auluck, and J.M. Wills, Optical properties of the group-IVB refractory metal compounds, Phys. Rev. B 54 (1996) 1673-1681.