[1] Lee, N., Benichi, H., Takeno, Y., Takeda, S., Webb, J., Huntington, E., & Furusawa, A. Teleportation of nonclassical wave packets of light. Science, 332(6027), 2011. 330-333.
[2] Sergienko, A. V. (Ed.). Quantum Communications and Cryptography. CRC Press. 2018)
[3] Prabhakar, S., Shields, T., Dada, A. C., Ebrahim, M., Taylor, G. G., Morozov, D., ... & Clerici, M. Two-photon quantum interference and entanglement at 2.1 μm. Science Advances, 6(13), 2020. eaay5195.
[4] Mehta, K., Achanta, V. G., & Dasgupta, S. Generation of non-classical states of photons from a metal–dielectric interface: a novel architecture for quantum information processing. Nanoscale, 12(1), 2020. 256-261.
[5] Zou, X., Pahlke, K., & Mathis, W. Generation of two-mode nonclassical states and a quantum-phase-gate operation in trapped-ion cavity QED. Physical Review A, 65(6), 2002. 064303.
[6] Deleglise, S., Dotsenko, I., Sayrin, C., Bernu, J., Brune, M., Raimond, J. M., & Haroche, S. Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature, 455(7212), 2008. 510-514.
[7] Faghihi, M. J., & Tavassoly, M. K. Number-phase entropic squeezing and nonclassical properties of a three-level atom interacting with a two-mode field: intensity-dependent coupling, deformed Kerr medium, and detuning effects. Journal of the Optical Society of America B, 30(11), 2013. 2810-2818.
[8] Baghshahi, H. R., & Faghihi, M. J. f-deformed cavity mode coupled to a Λ-type atom in the presence of dissipation and Kerr nonlinearity. Journal of the Optical Society of America B, 39(11), 2022. 2925-2933.
[9] Alam, N., Verma, A., & Pathak, A. Higher-order nonclassicalities of finite dimensional coherent states: A comparative study. Physics Letters A, 382(28), 2018. 1842-1851.
[10] de Matos Filho, R. L., & Vogel, W. Nonlinear coherent states. Physical Review A, 54(5), 1996. 4560.
[11] Man'ko, V. I., Marmo, G., Sudarshan, E. C. G., & Zaccaria, F. f-Oscillators and nonlinear coherent states. Physica Scripta, 55(5), 1997. 528.
[12] Roknizadeh, R., & Tavassoly, M. K. The construction of some important classes of generalized coherent states: the nonlinear coherent states method. Journal of Physics A: Mathematical and General, 37(33), 2004. 8111.
[13] Torkzadeh-Tabrizi, S., Faghihi, M. J., & Honarasa, G. Phase space nonclassicality and sub-Poissonianity of deformed photon-added nonlinear cat states: algebraic and group theoretical approach. Optics Letters, 48(3), 2023. 688-691.
[14] Alsing, P., Guo, D. S., & Carmichael, H. J. Dynamic Stark effect for the Jaynes-Cummings system. Physical Review A, 45(7), 1992. 5135.
[15] Wunsche, A. Displaced Fock states and their connection to quasiprobabilities. Quantum Optics: Journal of the European Optical Society Part B, 3(6), 1991. 359.
[16] Zheng-Feng, H. Fluctuation of phase in the displaced number states. Journal of Modern Optics, 39(6), 1992. 1381-1397.
[17] Dodonov, V. V., & De Souza, L. A. Decoherence of superpositions of displaced number states. Journal of Optics B: Quantum and Semiclassical Optics, 7(12), 2005. S490.
[18] de Oliveira, F. A. M., Kim, M. S., Knight, P. L., & Buek, V. Properties of displaced number states. Physical Review A, 41(5), 1990. 2645.
[19] Podoshvedov, S. A. Displaced photon states as resource for dense coding. Physical Review A, 79(1), 2009. 012319.
[20] Podoshvedov, S. A. Quantum teleportation through an entangled state composed of displaced vacuum and single-photon states. Journal of Experimental and Theoretical Physics, 106, 2008. 435-441.
[21] Maldonado-Villamizar, F. H., Alderete, C. H., & Rodríguez-Lara, B. M. Squeezed displaced entangled states in the quantum Rabi model. Physical Review A, 100(1), 2019. 013811.
[22] Lvovsky, A. I., & Babichev, S. A. Synthesis and tomographic characterization of the displaced Fock state of light. Physical Review A, 66(1), 2002. 011801.
[23] de Oliveira, G. C., de Almeida, A. R., de Queirós, I. P., Moraes, A. M., & Dantas, C. M. Alternative proposal for the generation of the displaced number state. Physica A: Statistical Mechanics and its Applications, 351(2-4), 2005. 251-259.
[24] Scarani, V., Iblisdir, S., Gisin, N., & Acin, A. Quantum cloning. Reviews of Modern Physics, 77(4), 2005. 1225.
[25] Xiang, G. Y., Ralph, T. C., Lund, A. P., Walk, N., & Pryde, G. J. Heralded noiseless linear amplification and distillation of entanglement. Nature Photonics, 4(5), 2010. 316-319.
[26] Fiurášek, J. Teleportation-based noiseless quantum amplification of coherent states of light. Optics Express, 30(2), 2022. 1466-1489.
[27] Ralph, T. C., & Lund, A. P. Nondeterministic noiseless linear amplification of quantum systems. In AIP Conference Proceedings. Vol. 1110, No. 1, (2009, April). pp. 155-160. American Institute of Physics.
[28] Zavatta, A., Fiurášek, J., & Bellini, M. A high-fidelity noiseless amplifier for quantum light states. Nature Photonics, 5(1), 2011. 52-56.
[29] Yang, S., Zhang, S., Zou, X., Bi, S., & Lin, X. Improving noiseless linear amplification for optical quantum communication with quadrature squeezing. Physical Review A, 87(2), 2013. 024302.
[30] Xiang, G. Y., Ralph, T. C., Lund, A. P., Walk, N., & Pryde, G. J. Heralded noiseless linear amplification and distillation of entanglement. Nature Photonics, 4(5), 2010. 316-319.
[31] Ferreyrol, F., Barbieri, M., Blandino, R., Fossier, S., Tualle-Brouri, R., & Grangier, P. Implementation of a nondeterministic optical noiseless amplifier. Physical Review Letters, 104(12), 2010. 123603.
[32] Mičuda, M., Straka, I., Miková, M., Dušek, M., Cerf, N. J., Fiurášek, J., & Ježek, M. Noiseless loss suppression in quantum optical communication. Physical Review Letters, 109(18), 2012. 180503.
[33] Kocsis, S., Xiang, G. Y., Ralph, T. C., & Pryde, G. J. Heralded noiseless amplification of a photon polarization qubit. Nature Physics, 9(1), 2013. 23-28.
[34] Fiurášek, J., & Cerf, N. J. Gaussian postselection and virtual noiseless amplification in continuous-variable quantum key distribution. Physical Review A, 86(6), 2012. 060302.
[35] Blandino, R., Leverrier, A., Barbieri, M., Etesse, J., Grangier, P., & Tualle-Brouri, R. Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier. Physical Review A, 86(1), 2012. 012327.
[36] Brask, J. B., Brunner, N., Cavalcanti, D., & Leverrier, A. Bell tests for continuous-variable systems using hybrid measurements and heralded amplifiers. Physical Review A, 85(4), 2012. 042116.
[37] Kim, Y. S., Lee, J. C., Kwon, O., & Kim, Y. H. Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nature Physics, 8(2), 2012. 117-120.
[38] Xiang, G. Y., Ralph, T. C., Lund, A. P., Walk, N., & Pryde, G. J. Heralded noiseless linear amplification and distillation of entanglement. Nature Photonics, 4(5), 2010. 316-319.
[39] Ferreyrol, F., Barbieri, M., Blandino, R., Fossier, S., Tualle-Brouri, R., & Grangier, P. Implementation of a nondeterministic optical noiseless amplifier. Physical Review Letters, 104(12), 2010. 123603.
[40] Mičuda, M., Straka, I., Miková, M., Dušek, M., Cerf, N. J., Fiurášek, J., & Ježek, M. Noiseless loss suppression in quantum optical communication. Physical Review Letters, 109(18), 2012. 180503.
[41] Dias, J., & Ralph, T. C. Quantum repeaters using continuous-variable teleportation. Physical Review A, 95(2), 2017. 022312.
[42] Adnane, H., Bina, M., Albarelli, F., Gharbi, A., & Paris, M. G. Quantum state engineering by nondeterministic noiseless linear amplification. Physical Review A, 99(6), 2019. 063823.
[43] Farzan, M. E., Faghihi, M. J., & Honarasa, G. Nonclassical properties of f-deformed photon-added squeezed Kerr states. Physica A: Statistical Mechanics and its Applications, 565, 2021. 125569.
[44] Feng, L. J., & Gong, S. Q. Two-photon blockade generated and enhanced by mechanical squeezing. Physical Review A, 103(4), 2021. 043509.
[45] Vogel, W. Nonclassical states: An observable criterion. Physical Review Letters, 84(9), 2000. 1849.
[46] Faghihi, M. J. Generalized Photon Added and Subtracted f‐Deformed Displaced Fock States. Annalen der Physik, 532(12), 2020. 2000215.
[47] Scully, M. O., & Zubairy, M. S. Quantum Optics. Cambridge University Press. 1999.
[48] Gerry, C. C., & Knight, P. L. Introductory Quantum Optics. Cambridge University Press. 2005.
[49] Ghorbani, M., Faghihi, M. J., & Safari, H. Wigner function and entanglement dynamics of a two-atom two-mode nonlinear Jaynes–Cummings model. Journal of the Optical Society of America B, 34(9), 2017. 1884-1893.
[50] Ficek, Z., & Wahiddin, M. R. Quantum Optics for Beginners. CRC Press. 2014.