Document Type : Research

Authors

1 1Department of Physics, Technical and Vocational University, Khoramabad, Iran

2 2Assistant Professor, Department of Physics, Payame Noor University, Tehran, Iran

Abstract

In this research, the electronic, magnetic and optical properties of inverse Heusler alloys Ti2ScX (X=Si,Sn) were studied using the Quantum Espresso software package based on the density functional theory. The results of the electronic properties investigation showed that both alloys are half-metals in their equilibrium lattice constant and exhibit 100% spin polarization around the Fermi level. The indirect half-metallic band gap for Ti2ScSi and Ti2ScSn alloys were obtained as 0.35eV and 0.11eV, respectively. Furthermore, considering the high values of the Curie temperature of Ti2ScX (X=Si, Sn) alloys, it can be concluded that these alloys are stable at room temperature. Analyzing magnetic properties revealed that Ti2ScX (X=Si,Sn) alloys exhibit ferromagnetic behavior in their stable structure, and their total magnetic moment is 7µB/f.u., which is in good agreement with the Slater-Pauling rule. Consequently, it can be inferred Heusler alloys Ti2ScX (X=Si,Sn) are half-metal ferromagnetism. Additionally, the optical properties of these alloys suggest their potential as electromagnetic waves absorbers.
 

Keywords

[1] بیگ زاده, امیرمحمد, با سعادت, محمدرضا, رشیدیان وزیری, محمدرضا (1400). بررسی اثر محوشدگی پاسخ کالریمتر تداخل‌سنجی تمام‌نگاری به روش حل عددی، دوفصلنامه علمی اپتوالکترونیک,3(2), pp. 75-80. doi: 10.30473/jphys.2021.57254.1099
 
[2]  Andreo, P., Burns, D.T., Nahum, A.E., Seuntjens, J. and Attix, F.H., 2017. Fundamentals of ionizing radiation dosimetry. John Wiley & Sons.
[3]  Smith-Bindman, R., Miglioretti, D.L., Johnson, E., Lee, C., Feigelson, H.S., Flynn, M., Greenlee, R.T., Kruger, R.L., Hornbrook, M.C., Roblin, D. and Solberg, L.I., 2012. Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health care systems, 1996-2010. Jama, 307(22), pp.2400-2409.
[4]  Renaud, J., Palmans, H., Sarfehnia, A. and Seuntjens, J., 2020. Absorbed dose calorimetry. Physics in Medicine & Biology, 65(5), p.05TR02.
[5]  Palmans, H., Thomas, R., Simon, M., Duane, S., Kacperek, A., DuSautoy, A. and Verhaegen, F., 2004. A small-body portable graphite calorimeter for dosimetry in low-energy clinical proton beams. Physics in Medicine & Biology, 49(16), p.3737.
[6]  Ross, C.K. and Klassen, N.V., 1996. Water calorimetry for radiation dosimetry. Physics in Medicine & Biology, 41(1), p.1.
[7]  Beigzadeh, A. M., MR Rashidian Vaziri, and F. Ziaie. "Modelling of a holographic interferometry based calorimeter for radiation dosimetry." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 864 (2017): 40-49.
[8]  Beigzadeh, A.M., Vaziri, M.R., Ziaie, F. and Soltani, Z., 2018. Double-exposure holographic interferometry for radiation dosimetry: A new developed model. Radiation Measurements, 119, pp.132-139.
[9]  Vaziri, Mohammad Reza Rashidian, Amir Mohammad Beigzadeh, Farhood Ziaie, and Mehrdad Yarahmadi. "Digital holographic interferometry for measuring the absorbed three-dimensional dose distribution." The European Physical Journal Plus 135, no. 5 (2020): 436.
[1]  Hussmann, E. K., and W. L. McLaughlin. "Dose-distribution measurement of high-intensity pulsed radiation by means of holographic interferometry." Radiation research 47.1 (1971): 1-14.
[2]  Hussmann, E. K. "A holographic interferometer for measuring radiation energy deposition profiles in transparent liquids." Applied optics 10.1 (1971): 182-186.
[3]  Miller, Arne, and William L. McLaughlin. "Imaging and measuring electron beam dose distributions using holographic interferometry." Nuclear Instruments and Methods 128.2 (1975): 337-346.
[4]  Miller, Arne, and W. L. McLaughlin. "Holographic measurements of electron-beam dose distributions around inhomogeneities in water." Physics in medicine and biology 21.2 (1976): 285.
[5]  Cavan, A., & Meyer, J. Digital holographic interferometry: A novel optical calorimetry technique for radiation dosimetry. Medical Physics, 41(2) (2014)., 022102.
[6]  Flores-Martinez, E., Malin, M. J., & DeWerd, L. A. Development and characterization of an interferometer for calorimeter-based absorbed dose to water measurements in a medical linear accelerator. Review of Scientific Instruments, 87(11) (2016).
[7]  Telford, T., Roberts, J., Moggré, A., Meyer, J., & Marsh, S. Noise Considerations for Tomographic Reconstruction of Single-Projection Digital Holographic Interferometry-Based Radiation Dosimetry. Photonics, 10(2) (2023), 188.
[8]  Beigzadeh, A. M., Vaziri, M. R. R., & Ziaie, F. Application of double-exposure digital holographic interferometry method for calculating the absorbed dose in poly (methyl methacrylate) environment. Radiation Safety and Measurement, 6(4) (2017), 51-61.
[9]  Kreis, Thomas. "Holographic interferometry: principles and methods." Simulation and Experiment in Laser Metrology: Proceedings of the International Symposium on Laser Applications in Precision Measurements Held in Balatonfüred/Hungary. Vol. 2. 1996.
[10]  Flores-Martinez, Everardo, et al. "Challenges and opportunities in calorimetry for clinical radiation dosimetry." MEDICAL PHYSICS: Fourteenth Mexican Symposium on Medical Physics. Vol. 1747. No. 1. AIP Publishing, 2016.
[11]  Baskar, Rajamanickam, Jiawen Dai, Nei Wenlong, Richard Yeo, and Kheng-Wei Yeoh. "Biological response of cancer cells to radiation treatment." Frontiers in molecular biosciences 1 (2014): 24.
[12]  Helmstedter, Chris S., Mike Goebel, Robert Zlotecki, and Mark T. Scarborough. "Pathologic fractures after surgery and radiation for soft tissue tumors." Clinical Orthopaedics and Related Research (1976-2007) 389 (2001): 165-172.
[13]  Zieli, Tomasz G. "Introduction to the finite element method." (1992).
[14]  Pelowitz, Denise B. "MCNPX user’s manual version 2.5. 0." Los Alamos National Laboratory 76 (2005).
[15]  Matlab, Starting. "Matlab." The MathWorks, Natick, MA (2012).
[16]  Dinesh Mayani, Devanshi. "Proton therapy for cancer treatment." Journal of Oncology Pharmacy Practice 17, no. 3 (2011): 186-190.
[17]  Paganetti, Harald. Proton beam therapy. IOP Publishing, 2017.
[18]  Kurudirek, M., 2014. Effective atomic numbers of different types of materials for proton interaction in the energy region 1 keV–10 GeV. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 336, pp.130-134.