[1] Hulburt EO. Atmospheric ionization by cosmic radiation. Physical Review. 1931 Jan 1; 37(1):1.
[2] Levatter, J., Lin, S., 1980. Necessary conditions for the homogeneous formation of pulsed avalanche discharges at high gas-pressures. J. Appl. Phys. 0021-8979. 51 (1), 210–222. WOS:A1980JF79800034.
[3] Cherrington, B., 2014. Gaseous Electronics and Gas Lasers. Elsevier, New York, ISBN: 978-1-4832-7896-4.
[4] Francis, G., 1956. The Glow Discharge at Low Pressure, vol. 4/22. Springer, Berlin, Heidelberg. pp. 53–208. ISBN 978-3-642-45849-1, 978-3-642-45847-7.
[5] Llewellyn-Jones, F., 1966. Ionization and Breakdown in Gases. Methuen, London.
[6] Raether, H., 1964. Electron Avalanches and Breakdown in Gases. Butterworths, London.
[7] Raizer, Y., 2011. Gas Discharge Physics. Springer, New York. ISBN: 978-3-642-64760-4.
[8] Shkarofsky, I., Johnston, T., Bachynski, M., 1966. The Particle Kinetics of Plasmas. Addison-Wesley Pub. Co., Boston, MA.
[9] Misra, N. N., Schlüter, O., & Cullen, P. J. (Eds.). (2016). Cold plasma in food and agriculture: fundamentals and applications. Academic Press.
[10] Pitchford, L., ONeil, S., Rumble, J., 1981. Extended Boltzmann analysis of electron swarm experiments. Phys. Rev. A 23 (1), 294–304.
[11] Palmer, A., 1974. Physical model on initiation of atmospheric-pressure glow discharges. Appl. Phys. Lett. 0003-6951. 25 (3), 138–140. A1974T569500006.
[12] Kogelschatz, U., 2003. Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem. Plasma Process. 0272-4324. 23 (1), 1–46. WOS:000181061100001.[13] Marinov, D., Guerra, V., Guaitella, O., Booth, J.P., Antoine, R., 2013. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces. Plasma Sources Sci. Technol. 22 (5), 055018. ISSN 0963-0252, 1361-6595.
[14] Meek, J., 1940. A theory of spark discharge. Phys. Rev. 57 (8), 722–728.
[15] Rawlins, W., Caledonia, G., Armstrong, R., 1987. Dynamics of vibrationally excited ozone formed by three-body recombination: II. Kinetics and mechanism. J. Chem. Phys. 00219606. 87 (9), 5209.
[16] Raizer, Y., 2011. Gas Discharge Physics. Springer, New York. ISBN: 978-3-642-64760-4.
[17] Takahashi E, Kato S, Furutani H, Sasaki A, Kishimoto Y, Takada K, Matsumura S, Sasaki H. Single-shot observation of growing streamers using an ultrafast camera. Journal of Physics D: Applied Physics. 2011 Jul 7;44(30):302001.
[18] Hernández-Hernández H, Moreno-Vilet L, Villanueva-Rodríguez S (2019) Current status of emerging food processing technologies in Latin America: novel non-thermal processing. Innov Food Sci Emerg Technol 58:102233
[19] Rifna E, Singh SK, Chakraborty S, Dwivedi M (2019) Effect of thermal and non-thermal techniques for microbial safety in food powder: recent advances. Food Res Int 126:108654
[20] Singh S, Shalini R (2016) Effect of hurdle technology in food preservation: a review. Crit Rev Food Sci Nutr 56:641–649
[21] Isbary G, Shimizu T, Li Y-F, Stolz W, Thomas HM, Morfill GE, Zimmermann JL (2013) Cold atmospheric plasma devices for medical issues. Expert Rev Med Devices 10:367–377
[22] Nwabor, O. F., Onyeaka, H., Miri, T., Obileke, K., Anumudu, C., & Hart, A. (2022). A cold plasma technology for ensuring the microbiological safety and quality of foods. Food Engineering Reviews, 14(4), 535-554.
[23] Zabihinpour, M., 2023.
Designing and manufacturing dry Fruit Pesticide Device Based on Coldplasma Technology. The National Conference on Technological Advences
In Applied Physics. https://civilica.com/ doc/1666479