[1]. M.L. Brongersma, and V.M. Shalaev, The case for plasmonics. Science, 2010. 328(5977): p. 440-441.
[2]. W. L. Barnes, A. Dereux, and T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424 (2003) 824-830.
[3]. R.W.Wood, XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4 (1902) 396-402.
[4]. R.H. Ritchie, et al., Surface-plasmon resonance effect in grating diffraction. Physical review letters, 21 (1968) 1530.
[5]. U. Kreibig, U. and P. Zacharias, Surface plasma resonances in small spherical silver and gold particles. Zeitschrift für Physik A Hadrons and nuclei, 231 (1970) 128-143.
[6] J.Z. Zhang, and C. Noguez, Plasmonic optical properties and applications of metal nanostructures. Plasmonics, 3 (2008) 127-150.
[7] E. Kretschmann, and H. Raether, Radiative decay of non radiative surface plasmons excited by light, in Zeitschrift für Naturforschung A. (1968) 2135-2136.
[9] B.E.A. Saleh, and M.C. Teich, Fundamentals of photonics. John Wiley & Sons. (1991) 313.
[10]. D.K. Yang, and S.T. Wu, Fundamentals of liquid crystal devices. John Wiley & Sons.(2014)
[11]. I.C. Khoo, Liquid crystals: physical properties and nonlinear optical phenomena. John Wiley & Sons, (1995).
[12]. K.Chu, et al., Electrically controlled surface plasmon resonance frequency of gold nanorods. Applied physics letters, 89 (2006) 103107,1 -3.
[13]. V.K. Hsiao, et al., Light‐driven plasmonic switches based on au nanodisk arrays and photoresponsive liquid crystals. Advanced Materials, 20 (2008) 3528-3532.
[14]. Y.J. Liu, et al., A frequency-addressed plasmonic switch based on dual-frequency liquid crystals. Applied Physics Letters, (2010) 091101.
[15]. Y.J.Liu, et al., Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals. Optics letters, 34 (2009) 2351-2353.
[16] D. Zografopoulos, and R. Beccherelli, Long-range plasmonic directional coupler switches controlled by nematic liquid crystals.
Optics express, 21(2013) 8240-8250
COPYRIGHTS
© 2022 by the authors Licensee PNU, Tehran, Iran This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4 0 International (CC BY4 0) (http:/creativecommons org/licenses/by/4 0)
|
|
[17] Y.J. Liu, et al., Light‐driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays. Advanced Materials, 24 (2012) 131-135.
[18] S. Guangyuan, et al., Annular aperture array based color filter. Applied Physics Letters, 99 (2011) 033105.
[19] S. Guangyuan, et al., Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. Nanoscale, 5 (2013) 6243-6248.
[20] D.C. Zografopoulos, and R. Beccherelli, Liquid – crystal - tunable metal–insulator – metal plasmonic waveguides and Bragg resonators. Journal of Optics, 15 (2013) 055009.
[21]A. Vial, et al., Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Physical Review B, 71 (2005) 085416.
[22] L. De Sio, et al., Double active control of the plasmonic resonance of a gold nanoparticle array. Nanoscale, 4 (2012) 7619-7623.
[23] C. Powell, and J. Swan, Effect of oxidation on the characteristic loss spectra of aluminum and magnesium. Physical Review, 180 (1960) 640.
[24] R.H. Ritchie, Plasma losses by fast electrons in thin films. Physical review, 106 (1957) 874.