[1] M. Moradinasab, M. Pourfath, Numerical study of graphene superlattice-based photodetectors, IEEES Transactions on Electron Devices, vol. 62, no. 2, (2015) 593-600.
[2] H. Mohamadpour and A. Asgari, Graphene nanoribbon tunneling field effect transistors, Physica E 46 (2012) 270–273.
[3] H. Mohammadpour, Quantum dot resonant tunneling FET on graphene, Physica E 81 (2016) 91–95.
[4] S. Kahmann, A. Shulga, Quantum dot light emitting transistors, Advanced Functional Materials (2020).
[5] F. Hetsch, N. Zhao, Quantum dot field effect transistors, Materials Today, Vol. 16, Issue 9 (2013) 312-325.
[6] J. Chen, MA. Reed, Large on-off ratios and negative differential resistance in a molecular electronic device, JM Tour, Science, (1999) 286(5444):1550-1552.
[7] H. Agarwal, P. Kushwaha, Engineering negative differential resistance in ncfetsfor analog applications, IEEE Transactions on Electron Devices, vol. 65, no. 5 (2018) 2033- 2039.
[8] G. J. Ferreira, M. N. Leuenberger, Low-bias negative differential resistance in graphene nanoribbon superlattices, Phys. Rev. B 84 (2011) 125453.
[9] X. Chin, D. Cortecchia, Lead iodide perovskite light-emitting field effect transistors, Nat Commun 6 (2015) 7383.
[10] J. H. Schön, A. Dodabalapur, A light-emitting field effect transistor, Science (2000) 290 (5493): 963-6.
[11] DK.Kim, J. Choi, Low-voltage organic light-emitting field-effect transistors using n-dodecylphosphonic acid-passivated hfox dielectrics, Organic Electronics, Vol. 51 (2017) 287-294.
[12] R. Li, L. Schneider, Gate tuning of forster resonance energy transfer in a graphene-quantum dot fet photodetector, Sci Rep 6 (2016) 28224.
[13] H. Kalita, V. Harikrishnan, Field effect transport properties of electrochemically prepared graphene quantum dots, IEEE 5th International Nanoelectronics Conference (INEC) (2013) 463-465
[14] F. Hetsch, N. Zhao, Quantum dot field effect transistors, Materials Today, Vol. 16.9 (2013) 312-325.
[15] G. Konstantatos, M. Badioli, Hybrid graphene-quantum dot phototransistors with ultrahigh gain, Nat. Nanotechnol. 7 (2012) 363–368.
[16] M. I. Alomar, L. Serra, Interplay between resonant tunneling and spin precession oscillations in all-electronic all-semiconductor spin transistors, Phys. Rev. B 94 (2016) 075402.
[17] J. Pawłowski, G. Skowron, Spin-selective resonant tunneling induces by rashba spin-orbit interaction in semiconductor nanowire, Phys. Rev. Applied 15 (2021) 054066.
[18] R. Akter, N. Islam, Implementation of reversible logic gate in quantum dot cellular automata, International Journal of Computer Applications (0975 – 8887) Vol. 109, 1 (2015).
[19] KI. Bolotin, KJ. Sikes, Ultrahigh electron mobility in suspended graphene, Solid state communications 146.9-10 (2008): 351-355.
[20] R. Lake, G. Klimeck, Single and multiband modeling of quantum electron transport through layered semiconductor devices, Journal of Applied Physics 81.12 (1997): 7845-7869.