[1] R. Shelby, D. Smith, S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292 77 (2001).
[2] J. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85 3966 (2000).
[3] Z. Jacob, L. Alekseyev, E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14 8247 (2006).
[4] G. Zhu, “Designing a square invisibility cloak using metamaterials made of stacked positive-negative index slabs,” J. Appl. Phys. 113 163103 (2013).
[5] A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[6] J. Yang, X. Hu, X. Li, Z. Liu, X. Jiang, and J. Zi, “Cancellation of reflection and transmission at metamaterial surfaces,” Opt. Lett. 35, 16–18 (2010).
[7] D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys Rev. Lett. 90, 077405 (2003).
[8] F. Michelotti, and E. Descrovi, “Temperature stability of Bloch surface wave biosensors,” Appl. Phys. Lett, Vol. 99, pp. 231107, 2011.
[9] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6,183–191 (2007).
[10] A. K. Geim, “Graphene: status and prospects,” Science 324, 1530–1534 (2009).
[11] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[12] G.W. Hanson, “Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. 104 084314 (2008).
[13] P. Tassin, T. Koschny, C. Soukoulis, “Graphene for terahertz applications,” Science 341 620 (2013).
[14] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[15] I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[16] M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[17] K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[18] T. Zhang, L. Chen, and X. Li, “Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies,” Opt. Express 21(18), 20888–20899 (2013).
[19] B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21(14), 17089–17096 (2013).
[20] E. L. Albuquerque, and M. G. Cottam, “Theory of elementary excitations in quasiperiodic- structures,” Phys. Rep. 376 (4), 225-337 (2003).
[21] C. Janot. Quasicrystals, Oxford Clarendon press.
[22] A.N Poddubny, E.L Ivchenkoa. Photonic quasicrystalline and aperiodic structures. Physica E 42:1871–1895 (2010).
[23] AM. Vyunishev, PS. Pankin, SE. Svyakhovskiy, IV. Timofeev, SY. Vetrov, “Quasiperiodic one-dimensional photonic crystals with adjustable multiple photonic bandgaps” Opt. Lett. 42 (18): 3602-3605 (2017).
[24] D. Qi, X. Wang, Y. Cheng, F. Chen, L. Liu and R. Gong, “Quasi-periodic photonic crystal Fabry–Perot optical filter based on Si/SiO2 for visible-laser spectral selectivity” J. Phys . D. Appl. Phys. 51 (22):225103, (2018).
[25] G. He, C. Zhu, Y. Jiang, j. Ren, Y. Guo, “Generation of path-polarization hyperentanglement using quasi-phase-matching in quasi-periodic nonlinear photonic crystal”, Sci. Rep. 7: 05271-05277 (2017).
[26] X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[27] W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphenedielectric composite,” Appl. Phys. Lett. 104, 051902 (2014).
[28] Z. Eyni, and K. Milanchian, “Effect of nonlinear cap layer on TM‑polarized surface waves in a graphene‑based photonic crystal,” Opt Quant Electron. 52: 207 (2020).
[29] L. Falkovsky, S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[30] A. Madani, S. R. Entezar, A. Namdar, and H. Tajalli, “Influence of the orientation of optical axis on the transmission properties of onedimensional photonic crystals containing uniaxial indefinite metamaterial,” J. Opt. Soc. Am. B 29, 2910–2914 (2012).