[1] حسینی، سیدمحمد، نوروزی، میلاد، سیدیزدی، جمیله، ایران نژاد، فاطمه (1401). بررسی رفتار کیفی چلانیدگی و درهمتنیدگی در رادار چلانیده دو مدی کوانتومی. دوفصلنامه اپتوالکترونیک، (2)4, 17-26. doi: 10.30473/jphys. 2022.65651.1122
[2] E. Jung and D. Park, Quantum illumination with three-mode Gaussian state, Quantum Information Processing 21, no. 2 (2022): 1-10.
[3] S. H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, J. H. Shapiro, Quantum illumination with Gaussian states, Phys. Rev. Lett. 101, 253601 (2008).
[4] J. H. Shapiro, The quantum illumination story, IEEE Trans. Aerosp. Electron. Syst. Magazine. 35, 8-20 (2020).
[5] S. Barzanjeh, S. Pirandola, D. Vitali, J. M. Fink, Microwave quantum illumination using a digital receiver, Sci. Adv. 6, eabb0451 (2020).
[6] S. Barzanjeh, S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, and S. Pirandola, Microwave quantum illumination, Phys. Rev. Lett. 114, 080503 (2015).
[7] Q. Cai, J. Liao, B. Shen, G. Guo, and Q. Zhou, Microwave quantum illumination via cavity magnonics, Phys. Rev. A 103, 052419 (2021).
[8] C. Weedbrook, S. Pirandola, J. Thompson, V. Vedral, and M. Gu, How discord underlies the noise resilience of quantum illumination. New J. Phys. 18, 043027 (2016).
[9] C. Noh, C. Lee and S. Y. Lee, Quantum illumination with definite photon-number entangled states. J. Opt. Soc. Am. B 39, no. 5 (2022): 1316-1322.
[10] J. Wang and K. M. Wong, Optical parametric amplifier detection for quantum illumination. In ICC 2022-IEEE International Conference on Communications, pp. 660-665. IEEE, 2022.
[11] S. Zhang, Stealth in quantum illumination with a probabilistic mixed strategy, J. Opt. Soc. Am. B 39, no. 7 (2022): 1799-1806.
[12] Q. Zhuang and J. H. Shapiro, Ultimate accuracy limit of quantum pulse-compression ranging, Physical review letters 128, no. 1 (2022): 010501.
[13] P. Livreri, E. Enrico, L. Fasolo, A. Greco, A. Rettaroli, D. Vitali, A. Farina, C. F. Marchetti and A. Sq D. Giacomin, Microwave quantum radar using a josephson traveling wave parametric amplifier, In 2022 IEEE Radar Conference (RadarConf22), pp. 1-5. IEEE, 2022.
[14] A. Karsa, J. Carolan, S. Pirandola, Quantum channel-position finding using single photons, Phys. Rev. A 105, no. 2 (2022): 023705.
[15] G. Spedalieri and S. Pirandola, Performance of coherent‐state quantum target detection in the context of asymmetric hypothesis testing, IET Quantum Communication (2022).
[16] B. H. Wu, Z. Zhang, Q. Zhuang, Continuous-variable quantum repeaters based on bosonic error-correction and teleportation: architecture and applications, Quantum Science and Technology 7, no. 2 (2022): 025018.
[17] Wang, Tiancheng, Souichi Takahira, and Tsuyoshi Sasaki Usuda, Error probabilities of quantum illumination with attenuation using maximum and non-maximum quasi-Bell states, IEEJ Transactions on Electronics, Information and Systems 142, no. 2 (2022): 151-161.
[18] S. Eshete, Quantum information transfer between optical and microwave output modes via cavity magnonics, J. Magn. Magn. Mater 549 (2022): 168987.
[19] I. B. Djordjevic, Entanglement assisted radars with transmitter side optical phase conjugation and classical coherent detection, IEEE Access, 10 (2022) 49095-49100.
[20] S. Y. Lee, Y. Jo, T. Jeong, J. Kim, D. H. Kim, D. Kim, D. Y. Kim, Y. S. Ihn, Z. Kim, Observable bound for Gaussian illumination, Phys. Rev. A 105, no. 4 (2022): 042412.
[21] L. Wang, P. Cai, Z. Liu, Z. Xie, Y. Fang, Role of carbon quantum dots on Nickel titanate to promote water oxidation reaction under visible light illumination, J. Colloid Interface Sci. 607 (2022): 203-209.
[22] A. O. C. Davis, G. Sorelli, V. Thiel, B. J. Smith, Quantum-enhanced interferometry by entanglement-assisted rejection of environmental noise, Phys. Rev. A 105, no. 2 (2022): 022601.
[23] D. Luong, C. W. S. Chang, A. M. Vadiraj, A. Damini, C. M. Wilson, B. Balaji, Receiver operating characteristics for a prototype quantum two-mode squeezing radar, IEEE Trans. Aerosp. Electron. Syst. 56, 2041-2060 (2019).
[24] N. Messaoudi, C. W. Chang, A. M. Vadiraj, J. Bourassa, B. Balaji, and C. M. Wilson, Quantum-enhanced noise radar, Bulletin of the American Physical Society 65 (2019).
[25] D. Luong, B. Balaji, C.W. S. Chang, V. M. A. Rao, and C. Wilson, Microwave quantum radar: An experimental validation, In 2018 International Carnahan Conference on Security Technology (ICCST), (IEEE, 2018), pp. 1-5.
[26] D. Luong, S. Rajan, and B. Balaji, Quantum Monopulse Radar, In 2020 International Applied Computational Electromagnetics Society Symposium (ACES), (IEEE, 2020), pp. 1-2.
[27] D. Luong, S. Rajan, and B. Balaji, Entanglement-based quantum radar: From myth to reality, IEEE Trans. Aerosp. Electron. Syst. Magazine 35, 22-35 (2020).
[28] D. Luong, S. Rajan, and B. Balaji, Are quantum radar arrays possible? In 2019 IEEE International Symposium on Phased Array System & Technology (PAST), (IEEE, 2019), pp. 1-4.
[29] D. Luong, B. Balaji, Quantum radar, quantum networks, not-so-quantum hackers, In Signal Processing, Sensor/Information Fusion, and Target Recognition XXVIII, vol. 11018. International Society for Optics and Photonics, (2019), p. 110181E.
[30] M. Frasca, A. Farina, Multiple Input-Multiple Output Quantum Radar, In 2020 IEEE Radar Conference (RadarConf20), (IEEE, 2020) pp. 1-4.
[31] L. Maccone and C. Ren, Quantum radar, Phys. Rev. Lett. 124, 200503 (2020).
[32] M. Lanzagorta, Quantum radar, Synthesis Lectures on Quantum Computing 3, 1-139 (2011).
[33] D. Luong, B. Balaji, Quantum two‐mode squeezing radar and noise radar: covariance matrices for signal processing, IET Radar, Sonar & Navigation 14, 97-104 (2020).
[34] D. Luong, S. Rajan, and B. Balaji, Quantum two-mode squeezing radar and noise radar: Correlation coefficients for target detection, IEEE Sens. J. 20, 5221-5228 (2020).
[35] D. Luong, B. Balaji, S. Rajan, Performance prediction for coherent noise radars using the correlation coefficient, IEEE Access 10, 8627-8633 (2022).
[36] M. Norouzi, S. M. Hosseiny, J. Seyed-Yazdi, M. H. Ghamat, Design and simulation of engineered Josephson parametric amplifier in quantum two-mode squeezed radar, (2022).
[37] K. Durak, Z. Seskir, B. Rami, Quantum Radar, In Quantum Computing Environments, pp. 125-165. Springer, Cham, 2022.
[38] P. Livreri, E. Enrico, L. Fasolo, A. Greco, A. Rettaroli, D. Vitali, A. Farina, C. F. Marchetti, A. Sq D. Giacomin, Microwave quantum radar using a josephson traveling wave parametric amplifier, In 2022 IEEE Radar Conference (RadarConf22), pp. 1-5. IEEE, 2022.
[39] Z. Tian, D. Wu, Y. Xu, X. Zhou, Y. Zhang, T. Hu, Closed-form model and analysis for the enhancement effect of a rectangular plate in the scattering characteristics of multiphoton quantum radar, Optics Express 30, no. 12 (2022): 20203-20212.
[40] D. Luong, B. Balaji, S. Rajan, A likelihood ratio detector for QTMS radar and noise radar, IEEE Transactions on Aerospace and Electronic Systems 58, no. 4 (2022) 3011-3020.
[41] D. Luong, B. Balaji, S. Rajan, Performance prediction for coherent noise radars using the correlation coefficient, IEEE Access 10 (2022) 8627-8633.
[42] N. Korolkova, G. Leuchs, R. Loudon, T. C. Ralph, C. Silberhorn, Polarization squeezing and continuous-variable polarization entanglement, Phys. Rev. A 65, no. 5 (2002): 052306.
[43] O. Glöckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. Van Loock, N. Korolkova, G. Leuchs, Experiment towards continuous-variable entanglement swapping: Highly correlated four-partite quantum state, Phys. Rev. A 68, no. 1 (2003): 012319.
[44] H. Liu, A. Helmy, B. Balaji, Inspiring radar from quantum-enhanced LiDAR, In 2020 IEEE International Radar Conference (RADAR), pp. 964-968. IEEE, 2020.
[45] H. Liu, B. Balaji, A. S. Helmy, Target detection aided by quantum temporal correlations: Theoretical analysis and experimental validation, IEEE Transactions on Aerospace and Electronic Systems 56, no. 5 (2020): 3529-3544.
[46] P. S. Blakey, H. Liu, G. Papangelakis, M. L. Iu, Y. Zhang, Z. M. Léger, A. S. Helmy, Quantum Enhanced LIDAR using Nonlocal Dispersion, In CLEO: Science and Innovations, pp. STu5O-4. Optica Publishing Group, 2022.
[47] V. Josse, A. Dantan, A. Bramati, M. Pinard, E. Giacobino, Continuous variable entanglement using cold atoms, Phys. Rev. Lett. 92, no. 12 (2004): 123601.
[48] G. Li, Ya-ping Yang, K. Allaart, and D. Lenstra, Entanglement for excitons in two quantum dots in a cavity injected with squeezed vacuum, Phys. Rev. A 69, no. 1 (2004): 014301.
[49] R. W. Rendell, A. K. Rajagopal, Entanglement of pure two-mode Gaussian states, Phys. Rev. A 72, no. 1 (2005): 012330.
[50] J. Martin, A. Micheli, V. Vennin, Discord and decoherence, J. Cosmol. Astropart. Phys. 2022, no. 04 (2022): 051.
[51] Scully, M., & Zubairy, M. Quantum Optics. Cambridge: Cambridge University Press (1997). doi:10.1017/CBO9780511813993.
[52] Nielsen, M. A., & Chuang, I. L. Quantum information and quantum computation. 10th Anniversary Edition. Cambridge: Cambridge University Press. 2010.
[53] S. Barzanjeh, M. Abdi, G. J. Milburn, P. Tombesi, D. Vitali, Reversible optical-to-microwave quantum interface, Phys. Rev. Lett. 109, no. 13 (2012): 130503.
[54] S. Barzanjeh, E. S. Redchenko, M. Peruzzo, M. Wulf, D. P. Lewis, G. Arnold, J. M. Fink, Stationary entangled radiation from micromechanical motion, Nature 570, no. 7762 (2019): 480-483.
[55] G. Adesso, A. Serafini, F. Illuminati, Entanglement, purity, and information entropies in continuous variable systems, Open Syst. Inf. Dyn. 12, no. 2 (2005): 189-205.
[56] J. S. Prauzner-Bechcicki, Two-mode squeezed vacuum state coupled to the common thermal reservoir, J. Phys. A Math. Gen. 37, no. 15 (2004): L173.
[57] A. Serafini, F. Illuminati, M. G. A. Paris, S. De Siena, Entanglement and purity of two-mode Gaussian states in noisy channels, Phys. Rev. A 69, no. 2 (2004): 022318.
[58] M. J. Woolley and A. A. Clerk, Two-mode squeezed states in cavity optomechanics via engineering of a single reservoir, Phys. Rev. A 89, no. 6 (2014) 063805