نوع مقاله : پژوهشی

نویسندگان

1 گروه فیزیک، دانشکده علوم، دانشگاه ارومیه،ارومیه،ایران.

2 گروه فیزیک، دانشکده علوم، دانشگاه پیام نور شیراز، شیراز

چکیده

در این مقاله، ما یک سامانه‌ی درهم‌تنیده دو کیوبیت ابررسانای یکسان را مدل‌سازی می‌کنیم که در آن اتصالات جوزفسون با یک خازن ثابت جفت شده‌اند. این جفت‌شدگی خازن با اتصالات جوزفسون بدلیل افزایش همدوسی و بی اثر کردن اثرات واهمدوسی در سامانه افزوده شده است. برای درک بهتر از حالت سامانه با بهره‌گیری از تئوری محاسبات کوانتومی رفتارهای کیفی درهم‌تنیدگی، همدوسی و مقایسه بین آن‌ها در این مدل بصورت عددی مورد بررسی قرار گرفت. مشاهده شد برای افزایش انرژی جفت‌شدگی بین دو کیوبیت، حدی برقرار است و فراتر از آن باعث تضعیف عملکرد سامانه خواهد شد. همچنین دیده شد رفتارهای درهم‌تنیدگی و همدوسی تقریبا مشابه هستند و می‌توان با راه‌کارهایی آن‌ها را در دماهای بالا حفظ کرد. نکته‌ای قابل توجه این بود که با افزایش انرژی جوزفسون کیوبیت‌ها، همدوسی و درهم‌تنیدگی حتی برای دما‌های بالا نیز افزایش می‌یابد. همچنین با افزایش انرژی جفت‌شدگی متقابل بین کوبیت‌ها، همدوسی و درهم‌تنیدگی در دماهای بالا حفظ می‌شود که می‌توان این نکته را در ساخت منابع درهم‌تنیدگی لحاظ کرد. افزون‌براین، تفاوت بین یک سامانه‌ی با دوکیوبیت همسان و ناهمسان نیز بیان می‌شود.

کلیدواژه‌ها

[1] Memoria, Minakshi, Anuj Kumar, and Sunil Ghildiyal. "A Rapid Computing Technology on Profound Computing Era with Quantum Computing." In Rising Threats in Expert Applications and Solutions, pp. 559-565. Springer, Singapore, 2022.
[2] Feynman, R. P. Simulating Physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).
[3] D. Luong, C. W. S Chang, A. M. Vadiraj, A. Damini, C. M. Wilson, B. Balaji, Receiver operating characteristics for a prototype quantum two-mode squeezing radar. IEEE Trans. Aerosp. Electron. Syst. 56, 2041-2060 (2019).
[4] C. S. Chang, A. M. Vadiraj, J. Bourassa, B. Balaji, C. M. Wilson, "Quantum-enhanced noise radar." Appl. Phys. Lett. 114, 112601 (2019).
[5] D. Luong, B. Balaji, C.W. S. Chang, V. M. A. Rao, C. M. Wilson, Microwave quantum radar: An experimental validation, In 2018 International Carnahan Conference on Security Technology (ICCST), (IEEE, 2018), pp. 1-5.
[6] D. Luong, S. Rajan, and B. Balaji, Entanglement-based quantum radar: From myth to reality. IEEE Trans. Aerosp. Electron. Syst. Magazine, 35, 22-35 (2020)
[7] D. Luong, S. Rajan, and B. Balaji, Are quantum radar arrays possible?. In 2019 IEEE International Symposium on Phased Array System & Technology (PAST), (IEEE, 2019), pp. 1-4.
[8] D. Luong, and B. Balaji, Quantum radar, quantum networks, not-so-quantum hackers. In Signal Processing, Sensor/Information Fusion, and Target Recognition XXVIII, vol. 11018. International Society for Optics and Photonics, (2019), p. 110181E.
[9] S. Barzanjeh, S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, S. Pirandola, Microwave quantum illumination. Phys. Rev. Lett., 114, 080503 (2015).
[10] S. Barzanjeh, S. Pirandola, D. Vitali, J. M. Fink, Microwave quantum illumination using a digital receiver. Sci. Adv. 6, eabb0451 (2020).
[11] L. Maccone, C. Ren, Quantum radar. Phys. Rev. Lett., 124, 200503 (2020).
[12] S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, Advances in photonic quantum sensing. Nat. Photonics 12, 724-733 (2018).
[13] M. Lanzagorta, Quantum radar. Synthesis Lectures on Quantum Computing 3, 1-139 (2011).
[14] D. Luong, and B. Balaji, Quantum two‐mode squeezing radar and noise radar: covariance matrices for signal processing. IET Radar, Sonar & Navigation 14, 97-104 (2020).
[15] D. Luong, S. Rajan, and B. Balaji, Quantum two-mode squeezing radar and noise radar: Correlation coefficients for target detection. IEEE Sens. J. 20, 5221-5228 (2020).
[16] Hosseiny, Seyed Mohammad, Milad Norouzi, Jamileh Seyed-Yazdi, and Mohammad Hossein Ghamat. "Engineered Josephson Parametric Amplifier in quantum two-modes squeezed radar." arXiv preprint arXiv:2205.06344 (2022).
[17] Peng, Kaidong, Mahdi Naghiloo, Jennifer Wang, Yanjie Qiu, Yufeng Ye, Kyle Serniak, Alexander Melville et al. "Floquet Mode Josephson Traveling Wave Parametric Amplifier." Bulletin of the American Physical Society (2022).
[18] J. Grebel, A. Bienfait, É. Dumur, H-S. Chang, M-H. Chou, C. R. Conner, G. A. Peairs, R. G. Povey, Y. P. Zhong, and A. N. Cleland, Flux-pumped impedance-engineered broadband Josephson parametric amplifier. Appl. Phys. Lett., 118, 142601 (2021).
[19] Pagano, S., C. Barone, M. Borghesi, W. Chung, G. Carapella, A. P. Caricato, I. Carusotto et al. "Development of quantum limited superconducting amplifiers for advanced detection." IEEE Transactions on Applied Superconductivity 32, no. 4 (2022): 1-5.
[20] Malnou, M., J. Aumentado, M. R. Vissers, J. D. Wheeler, J. Hubmayr, J. N. Ullom, and J. Gao. "Performance of a Kinetic Inductance Traveling-Wave Parametric Amplifier at 4 Kelvin: Toward an Alternative to Semiconductor Amplifiers." Physical Review Applied 17, no. 4 (2022): 044009.
[21] Pan, Feng, and Pan Zhang. "Simulation of quantum circuits using the big-batch tensor network method." Physical Review Letters 128, no. 3 (2022): 030501.
[22] Huang, Zhenyu, and Siwei Sun. "Synthesizing Quantum Circuits of AES with Lower T-depth and Less Qubits." Cryptology ePrint Archive (2022).
[23] Meister, Richard, Cica Gustiani, and Simon C. Benjamin. "Exploring ab initio machine synthesis of quantum circuits." arXiv preprint arXiv:2206.11245 (2022).
[24] El-Qahtani, Zainab MH, K. Berrada, S. Abdel-Khalek, and H. Eleuch. "Thermal Fisher information and entropy squeezing for superconducting qubits." Results in Physics (2022): 105639.
[25] Song, Chao, Kai Xu, Wuxin Liu, Chui-ping Yang, Shi-Biao Zheng, Hui Deng, Qiwei Xie et al. "10-qubit entanglement and parallel logic operations with a superconducting circuit." Physical review letters 119, no. 18 (2017): 180511.
[26] Bernien, Hannes, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soonwon Choi et al. "Probing many-body dynamics on a 51-atom quantum simulator." Nature 551, no. 7682 (2017): 579-584.
[27] Zhang, Jiehang, Guido Pagano, Paul W. Hess, Antonis Kyprianidis, Patrick Becker, Harvey Kaplan, Alexey V. Gorshkov, Z-X. Gong, and Christopher Monroe. "Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator." Nature 551, no. 7682 (2017): 601-604.
[28] Sung, Kevin J., Jiahao Yao, Matthew P. Harrigan, Nicholas C. Rubin, Zhang Jiang, Lin Lin, Ryan Babbush, and Jarrod R. McClean. "Using models to improve optimizers for variational quantum algorithms." Quantum Science and Technology 5, no. 4 (2020): 044008.
[29] Shaw, M. D., Justin F. Schneiderman, J. Bueno, B. S. Palmer, Per Delsing, and P. M. Echternach. "Characterization of an entangled system of two superconducting qubits using a multiplexed capacitance measurement." Physical Review B 79, no. 1 (2009): 014516.
[30] W. K. Wootters, "Entanglement of formation of an arbitrary state of two qubits," Physical Review Letters, vol. 80, p. 2245, 1998.
[31] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, "Mixed-state entanglement and quantum error correction," Physical Review A, vol. 54, p. 3824, 1996.
[32] Ficek, Z., and R. Tanaś. "Dark periods and revivals of entanglement in a two-qubit system." Physical Review A 74, no. 2 (2006): 024304.
[33] Biswas, George, Anindya Biswas, and Ujjwal Sen. "Shared purity and concurrence of a mixture of ground and low-lying excited states as indicators of quantum phase transitions." arXiv preprint arXiv: 2202.03339 (2022).
[34] Fan, Xiao‐Gang, Huan Yang, Fei Ming, Dong Wang, and Liu Ye. "Constraint Relation Between Steerability and Concurrence for Two‐Qubit States." Annalen der Physik 533, no. 8 (2021): 2100098.
[35] Zhao, Ming-Jing, Teng Ma, Quan Quan, Heng Fan, and Rajesh Pereira. "l 1-norm coherence of assistance." Physical Review A 100, no. 1 (2019): 012315.
[36] Ma, Teng, Ming-Jing Zhao, Hai-Jun Zhang, Shao-Ming Fei, and Gui-Lu Long. "Accessible coherence and coherence distribution." Physical Review A 95, no. 4 (2017): 042328.
[37] Zhao, Ming-Jing, Teng Ma, and Shao-Ming Fei. "Coherence of assistance and regularized coherence of assistance." Physical Review A 96, no. 6 (2017): 062332.
[38] Kim, Kwang-Il, Myong Chol Pak, Ok Song An, Un Gyong Ri, Myong-Chol Ko, and Nam-Chol Kim. "Quantum entanglement and coherence of tripartite W state for Dirac fields under noisy channels in non-inertial frames." Physica Scripta (2022).
[39] Xu, Jianwei. "l 1 norm of coherence is not equal to its convex roof quantifier." Journal of Physics A: Mathematical and Theoretical 55, no. 14 (2022): 145302.
[40] Ferreira, Diego LB, Thiago O. Maciel, Reinaldo O. Vianna, and Fernando Iemini. "Quantum correlations, entanglement spectrum, and coherence of the two-particle reduced density matrix in the extended Hubbard model." Physical Review B 105, no. 11 (2022): 115145.
[41] Sun, Kai, Zheng-Hao Liu, Yan Wang, Ze-Yan Hao, Xiao-Ye Xu, Jin-Shi Xu, Chuan-Feng Li et al. "Activation of indistinguishability-based quantum coherence for enhanced metrological applications with particle statistics imprint." Proceedings of the National Academy of Sciences 119, no. 21 (2022): e2119765119.
[42] Ray, Tanaya, Ahana Ghoshal, Arun Kumar Pati, and Ujjwal Sen. "Estimating quantum coherence by noncommutativity of any observable and its incoherent part." Physical Review A 105, no. 6 (2022): 062423.
[43] Mishra, Sandeep, Kishore Thapliyal, and Anirban Pathak. "Attainable and usable coherence in X states over Markovian and non-Markovian channels." Quantum Information Processing 21, no. 2 (2022): 1-27.
[44] Van Vu, Tan, and Keiji Saito. "Finite-time quantum Landauer principle and quantum coherence." Physical review letters 128, no. 1 (2022): 010602.
[45] Baumgratz, Tillmann, Marcus Cramer, and Martin B. Plenio. "Quantifying coherence." Physical review letters 113, no. 14 (2014): 140401.
[46] Yu A. Pashkin, et al. "Quantum oscillations in two coupled charge qubits." Nature 421, no. 6925 (2003): 823-826