[1] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58 (1987) 2059-2062
[2] S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58 (1987) 2486-2489.
[3] F. Segovia-Chaves, H. Vinck-Posada, Tuning of transmittance spectrum in a one-dimensional superconductor-semiconductor photonic crystal, Physica B 543 (2018) 7-13.
[5] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Photonic crystals: Putting a new twist on light, Nature 386 (1997) 143-149.
[6] J. D. Joannopoulos et al., Photonic Crystals: Molding the Flow of Light, Princeton University Press, New Jersey, 2011.
[7] J. Fu, W. Chen, B. Lv, Tunable defect mode realized by graphene-based photonic crystal, Phys. Lett. A 380 (2016) 1793-1798.
[8] D.M. El-Amassi, S.A. Taya, N.R. Ramanujam, D. Vigneswaran, R. Udaiyakumar, Extension of energy band gap in ternary photonic crystal using left-handed materials, Superlattice Microst. 120 (2018) 353-362.
[9] O. Soltani, J. Zaghdoudi, M. Kanzari, High quality factor polychromatic filters based on hybrid photonic structures, Chinese J. Phys. 56 (2018) 2479-2487.
[10] M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide. Appl. Phys. Lett. 76 (2000) 952-955.
[11] K.V. Sreekanth, S. Zeng, K.-T. Yong, T. Yu, Sensitivity enhanced biosensor using graphene-based one-dimensional photonic Crystal, Sensors and Actuators B 182 (2013) 424-428.
[12] F. Segovia-Chaves, H. Vinck-Posada, Dependence of the defect mode with temperature, pressure and angle of incidence in a 1D semiconductor-superconductor photonic crystal, Physica C: Superconductivity and its Applications 553 (2018) 1-7.
[13] Y. Trabelsi, N.B. Ali, M. Kanzari, Tunable narrowband optical filters using superconductor dielectric generalized Thue-Morse photonic crystals, Microelectron. Eng. 213 (2019) 41-46.
[14] H. Mahmoodzadeh, B. Rezaei, Tunable Bragg defect mode in one-dimensional photonic crystal containing a graphene embedded defect layer, Appl. Opt. 57 (2018) 2172.
[15] C. Nayak, A. Aghajamali, M. Solaimani, J.K. Rakshit, D. Panigrahy, K.V.P. Kumar, B. Ramakrishna, Dodecanacci superconductor metamaterial photonic quasicrystal, Optik 222 (2020) 165290. https ://doi.org/10.1016/j.ijleo .2020.165290.
[16] H.-C. Hung, C.-J. Wu, S.-J. Chang, Terahertz temperature-dependent defect mode in a semiconductor-dielectric photonic crystal, J. Appl. Phys. 110 (2011) 093110.
[17]
V. Pourmahmoud,
B. Rezaei, Manipulation of Bragg and graphene photonic band gaps in one-dimensional photonic crystal containing graphene,
Optik 185 (2019) 875-880.
[18] L. Bian, Z. Deng, Y. Hong, Y. Qiu, Z. Liu, P. Xiao, G. Li, Double mode absorption in double defect photonic crystal with one graphene multilayer,
Opt. Quant. Electron 52,154 (2020)
https://doi.org/10.1007/s11082-020-2255-4.
[19] W. Belhadj, Properties of omnidirectional gap and defect mode of one dimensional grapheme dielectric periodic structures, Opt. Quant. Electron 52, 162 (2020) https://doi.org/10.1007/s11082-020-02267-y.
[20] Y. Li, L. Qi, J. Yu, Z. Chen, Y. Yao, YAO, X. Liu, One-dimensional multiband terahertz graphene photonic crystal filters, Opt. Mater. Express. 7 (2017) 1228-1239.