نوع مقاله : پژوهشی

نویسندگان

1 دکتری فیزیک، دانشگاه شیراز، شیراز، ایران

2 کارشناسی ارشد فیزیک، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

3 کارشناسی فیزیک، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

در این مقاله تأثیر میدان مغناطیسی بر ترازهای انرژی  در پاد نقطه کوانتومی  بررسی می‌شود. بدین منظور ابتدا بر اساس نظریه اختلال و در حضور میدان مغناطیسی خارجی، ویژه مقادیر انرژی  این نانو ساختار به‌ دست آورده می‌شود. سپس بر اساس پیش‌بینی‌های تئوریو همچنین با محاسبات عددی نشان داده خواهد شد که میدان مغناطیسی همیشه باعث از بین رفتن تبهگنی تراز‌های انرژی نمی‌شود و تحت شرایطی خاص، میدان مغناطیسی خود سبب به‌وجود آمدن تبهگنی جدید در ترازهای انرژی می‌شود. در ادامه نشان خواهیم داد تغییرات انرژی بر حسب ارتفاع سد پتانسیل باعث حذف کامل تبهگنی‌های ایجاد شده بعد از اعمال میدان مغناطیسی خواهد شد.

کلیدواژه‌ها

[1] B. C¸ akir, Y. Yakar, and A. Ozmen, ¨ Linear and nonlinear absorption coefficients of spherical quantum dot inside external magnetic field, Physica B 510, 86–91 (2017).
[2] F. Rahimi, T. Ghaffary, Y. Naimi and H. Khajehazad, 12 Effect of magnetic field on energy states and optical properties of quantum dots and quantum antidots, Opt. Quant. Electron. 53, 47-62 (2021).
[3] E. B. Al, E. Kasapoglu, H. Sari and I. S¨okmen, Zeeman splitting, Zeeman transitions and optical absorption of an electron confined in spherical quantum dots under the magnetic field, Phil. Mag. 101, 117-128 (2021).
[4] V. A. Holovatsky, O. M. Voitsekhivska and M. Ya. Yakhnevych, Effect of magnetic field on an electronic structure and intraband quantum transitions in multishell quantum dots, Physica E 93, 295–300 (2017).
[5] C. Heyn and C. A. Duque, Donor impurity related optical and electronic properties of cylindrical GaAs − AlxGa1−xAs quantum dots under tilted electric and magnetic fields, Sci. Rep. 10, 9155 (2020).
[6] Gh. Safarpour, M. A. Izadi, M. Novzari and E. Niknam, External electric field effect on the nonlinear optical properties of a laser dressed donor impurity in a GaAs spherical quantum dot confined at the center of a Ga1−xAlxAs cylindrical nano-wire, Indian J. Pure Appl. Phys. 53, 247-256 (2015).
[7] H. Khajehazad, T. Ghaffary, M. Ebrahimzadeh, Microwave Absorption Properties of Fe2O3/Paraffin Wax Nanocomposite, Asian J. Chem., 25(13) 7651-7652, (2013).
[8] H. Sari, E. Kasapoglu, S. Sakiroglu, I. S¨okmen and C. A. Duque, Impurity-related optical response in a 2D and 3D quantum dot with Gaussian confinement under intense laser field, Phil. Mag. 100, 619-641 (2020).
[9] M. G. Barseghyan, H. M. Baghramyan, A. A. Kirakosyan and D. Laroze, The transition from double to single quantum dot induced by THz laser field, Physica E 116, 113758 (2020).
[10] D. Laroze, M. Barseghyan, A. Radu and A. A. Kirakosyan, Laser driven impurity states in twodimensional quantum dots and quantum rings, Physica B 501, 1-4 (2016).
[11] T. Ghaffary, M. Ebrahimzadeh, M.M. Gharahbeigi, L. Shahmandi, Fabrication of iron nanowire arrays using nanoporous anodic alumina template, Asian J. Chem., 24(7), 3237-3239, (2012).
[12] Baser, P., Elagoz, S., Kartal, D.: The effects of pressure and barrier height on donor binding energy in GaAs∕Ga1−xAlxAs As cylindrical quantum well wires. Physica B 405, 3239–3249 (2010)
[13] Çakır, B., Atav, Ülfet, Yakar, Y., Özmen, A.: Calculation of Zeeman splitting and Zeeman transition energies of spherical quantum dot in uniform magnetic field. Chem. Phys. 475, 61–68 (2016)
[14] Çakır, B., Yakar, Y., Özmen, A.: Linear and nonlinear absorption coefficients of spherical quantum dot inside external magnetic field. Physica B 510, 86–91 (2017)
[15] S. M. Bilankohi, M. Ebrahimzadeh, T. Ghaffary, M. Zeidiyam, Scattering, absorption and extinction properties of Al/TiO2 core/shell nanospheres, Indian Journal of Science and Technology, 8(S9), 1–14 (2015).
[16] Davatolhagh, S., Jafari, A.R., Vahdani, M.R.K.: Oscillator strengths of the intersubband electronic transitions in the hydrogenic nano-antidots. Superlattices Microstructures 51, 62–72 (2012)
[17] S. Ghajarpour-Nobandegani and M. J. Karimi, Effects of hydrogenic impurity and external fields on the optical absorption in a ring-shaped elliptical quantum dot, Opt. Mater. 82, 75-80 (2018).
[18] S. M. Bilankohi, M. Ebrahimzadeh, T. Ghaffary, Study of the properties of Au/Ag core/shell nanoparticles and its application, Indian Journal of Science and Technology, 8(S9), 31–33 (2015).
[19] K. S. Rahul, N. Devaraj, R. K. Babu, S. Mathew, K. Salini and V. Mathew, Intraband absorption of D center in CdSe/CdS/CdSe/CdS multilayer quantum dot, J. Phys. Chem. Solid. 106, 99-104 (2017).
[20] R. Khordad, H. Bahramiyan and S. A. Mohammadi, Influence of impurity on binding energy and optical properties of lens shaped quantum dots: Finite element method and Arnoldi algorithm, Chin. J. Phys. 54, 20-32 (2016).
[21] P. Hosseinpour, A. Soltani-Vala and J. Barvestani, Effect of impurity on the absorption of a parabolic quantum dot with including Rashba spin–orbit interaction, Physica E 80, 48-52 (2016).
[22] H. Ghaforyan, T. Ghaffary, S. Mohammadibilankohi, M. Hasanpour, M. Ebrahimzadeh, R. Pincak, M. Farkhan, Effect of ultrasound waves intensity on the removal of Congo red dye from the textile industry wastewater by Fe3O4@ TiO2 core-shell nanospheres, Bulgarian Chemical Communications, 51(1), 10-15 (2019).
[23] E. C. Niculescu and D. Bejan, Nonlinear optical properties of GaAs pyramidal quantum dots: Effects of elliptically polarized radiation, impurity, and magnetic applied fields, Physica E 74, 51-58 (2015).
[24] E. Kasapoglu, F. Ungan, H. Sari, I. S¨okmen, M. E. MoraRamos and C. A. Duque, Donor impurity states and related optical responses in triangular quantum dots under applied electric field, Superlattice. Microst. 73, 171-184 (2014).