[1] P. Majewski, A. Keegan, Surface properties and water treatment capacity of surface engineered silica coated with 3-(2 aminoethyl) aminopropyltrimethoxysilane, Appl. Surf. Sci., 258 (2012) 2454–2458.
[2] P. Niu, J. Hao, Physicochemical and Engineering Aspects, Colloids Surf. A, 431 (2013) 127.
[3] G. Crini, Non-conventional low-cost adsorbents for dye removal: A review, Bioresour. Technol., 97 (2006) 1061–1085.
[4] H. Sun, C. Linyuan, L. Lehui, Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants, Nano Res., 406 (2011) 550-562.
[5] F. Zhu, Y. Wang, Y. Zhang and W. Wang, Synthesis of Fe3O4 nanorings/amine- functionalized reduced graphene oxide composites as supercapacitor electrode materials in neutral electrolyte, Int. J. Electrochem. Sci. 12 (2017) 7197–7204.
[6] X. Zhang, W. Cai, L. Hao and S. Feng, Q. Lin and W. Jiang, Preparation of Fe3O4/reduced graphene gxide nanocomposites with good dispersibility for delivery of paclitaxel, J. Nanomater. 2017 (2017) 6702890.
[7] J. Zhang, M. Liu and Z. Liu, T. Yang, Qi. He, K. Yang and H. Wang, Recent Advances and Applications of Semiconductor Photocatalytic Technology J. Sol-Gel Sci. Technol. 81 (2017) 424-431.
[8] Q. Xiang, J. Yu, Graphene-based photocatalysts for hydrogen generation, J. Phys. Chem. Lett., 4 (2013) 753-759.
[9] P. Worajittiphon, K. Pingmuang, B. Inceesungvorn, N. Wetchakun, S. Phanichphant, Enhancing the photocatalytic activity of ZnO nanoparticles for efficient rhodamine B degradation by functionalised graphene nanoplatelets,
Ceram. Int., 41 (2015) 1885-1889.
[10] Y. L. Pang, S. Lim, H. C. Ong, W.T. Chong, Research progress on iron oxide based magnetic materials: Synthesis techniques and photocatalytic applications Ceram. Int., 42 (2016) 9.
[11] A. S. Teja, P.Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles, Progress In Crystal Growth And Characterization of Materials, 55, 2009, 22. http://dx.doi.org/10.-1016/j.pcrysgrow. 2008. 08. 003.
[12] S. K. Maji, N. Mukherjee, Synthesis, characterization and photocatalytic activity of α-Fe2O3 nanoparticles Polyhedron, 33, 2012, 145.
[13] N. A. Roslan, H. O. Lintang, L. Yuliati, Preparation of iron (III) oxide nanoparticles using a mesoporous carbon nitride template for photocatalytic phenol removal, Mater. Res. Innov., 18, 2014, S6.
[14] P. Knauth, J. Schoonman, Nanocrystaline, metals and oxide, Kluwer Academic Publisher, 2002.
[15] L. Sun, Y. Wang, F. Raziq, Y. Qu, L. Bai, L. Jing, Enhanced photoelectrochemical activities for water oxidation and phenol degradation on WO3 nanoplates by transferring electrons and trapping holes, Sci. Rep. 7 (2017) 1303-1310.
[16] S. Balu, K. Uma, G. T. Pan, T. C. K. Yang and S. K. Ramaraj, Degradation of methylene blue dye in the presence of visible light using SiO2@Fe2O3 nanocomposites deposited on SnS2 Flowers, Materials 11 (2018) 1030.
[17] Z.X Chen, X.y Jin, Z. Chen, M. Megharaj, R. Naidu, Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron,
J. Colloid Interface Sci., 363 (2011) 601-607.
[18] G. Yi, B. Xing, H. Zeng, X. Wang, C. Zhang, J. Cao, and L. Chen, One-step synthesis of hierarchical micro-mesoporous SiO2/reduced graphene oxide nanocomposites for adsorption of aqueous Cr(VI), J. Nanomater. 2017 (2017) 6286549.
[19] S. Yang, T. Zeng, Y. Li, J. Liu, Q. Chen, J. Zhou, Y. Ye and B. Tang, Preparation of graphene oxide decorated Fe3O4@SiO2 nanocomposites with superior adsorption capacity and SERS detection for organic dyes, J. Nanomater., 2015 (2015) 817924.