[1] Bennett CH, Wiesner SJ. Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Physical review letters. 1992; 69(20): 2881.
[2] Ekert A. Quantum cryptography based on Bell's theorem. Physical review letters. 1991; 67(6):661-3.
[3] Bennett CH, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters WK. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical review letters. 1993; 70(13):1895.
[4] Barnett S. Quantum information: Oxford University Press; 2009.
[5] Zhang J-S, Xu J-B. Control of the entanglement of a two-level atom in a dissipative cavity via a classical field. Optics Communications. 2009; 282(13): 2543-6.
[6] Feng L-J, Zhang Y-J, Xia Y-J. Dynamics and improvement of quantum correlations in the triple Jaynes–Cummings model. Optics Communi-cations. 2016; 366:328-34.
[7] Rawlinson W, Vyas R. Enhancement of discord and entanglement with detuning for two coupled quantum dots in a driven cavity. Journal of Modern Optics. 2015; 62(13):1061-7.
[8] Mirmasoudi F., Ahadpour S. Dynamics super quantum discord and quantum discord teleportation in the Jaynes–Cummings model. Journal of Modern Optics. 2017: 1-7.
[9] Barenco A, Ekert AK. Dense coding based on quantum entanglement. Journal of Modern Optics. 1995; 42(6):1253-9.
[10] Braunstein S. SL Braunstein and HJ Kimble, Phys. Rev. A 61, 042302 (2000). Phys Rev A. 2000; 61: 042302.
[11] Bose S, Plenio MB, Vedral V. Mixed state dense coding and its relation to entanglement measures. Journal of Modern Optics. 2000; 47(2-3):291-310.
[12] Metwally N, Abdelaty M, Obada A-S. Quantum teleportation via entangled states generated by the Jaynes–Cummings model. Chaos, Solitons & Fractals. 2004; 22(3): 529-35.
[13] Hiroshima T. Optimal dense coding with mixed state entanglement. Journal of Physics A: Mathematical and General. 2001; 34(35): 6907.