[1] Tetlow H, Gradhand M. Semiconductor spintronics: Tuning the spin Hall effect in Si. Physical Review B. 2013;87(7):075206.
[2] Linder J, Halterman K. Super-conducting spintronics with magnetic domain walls. Physical Review B. 2014;90(10):104502.
[3] Splettstoesser J, Governale M, Zülicke U. Persistent current in ballistic mesoscopic rings with Rashba spin-orbit coupling. Physical Review B. 2003; 68(16): 165341.
[4] Sheng J, Chang K. Spin states and persistent currents in mesoscopic rings: Spin - orbit interactions. Physical Review B. 2006; 74(23): 235315.
[5] Ding G-H, Dong B. Spin-orbit coupling effect on persistent currents in a one-dimensional quantum ring with an Anderson impurity. Physical Review B. 2007;76(12):125301.
[6] Sun Q-f, Xie X, Wang J. Persistent spin current in a mesoscopic hybrid ring with spin-orbit coupling. Physical review letters. 2007; 98(19): 196801.
[7] Huang G-Y, Liang S-D. Orbital magnetic phase and pure persistent spin current in spin-orbit coupling mesoscopic rings. EPL (Europhysics Letters). 2009; 86(6): 67009.
[8] Vaseghi B, Rezaei G, Malian M. Spin–orbit interaction effects on the optical properties of spherical quantum dot. Optics Communi-cations. 2013; 287: 241-4.
[9] Winkler R, Papadakis S, De Poortere E, Shayegan M. Spin-Orbit Coupling in Two-Dimensional Electron and Hole Systems: Springer; 2003.
[10] Dresselhaus G. Spin-orbit coupling effects in zinc blende structures. Physical Review.
[11] Rashba E, Sheka V. Combined resonance in electron InSb. Soviet Physics - Solid State. 1961; 3(6): 1357-62.
[12] Bychkov YA, Rashba EI. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. Journal of physics C: Solid state physics. 1984; 17(33): 6039.
[13] Baskoutas S, Paspalakis E, Terzis A. Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field. Journal of Physics: Condensed Matter. 2007; 19(39): 395024.
[14] Li S-S, Xia J-B. Electronic structure and binding energy of a hydrogenic impurity in a hierarchically self-assembled GaAs∕ Al x Ga 1− x As quantum dot. Journal of applied physics. 2006; 100(8): 083714.
[15] Akgül S, Şahin M, Köksal K. A detailed investigation of the electronic properties of a multi-layer spherical quantum dot with a parabolic confinement. Journal of Lumine-scence. 2012; 132(7): 1705-13.
[16] He L, Xie W. Effects of an electric field on the confined hydrogen impurity states in a spherical parabolic quantum dot. Super-lattices and Microstructures. 2010; 47(2): 266-73.
[17] Dehyar A, Rezaei G, Zamani A. Electronic structure of a spherical quantum dot: Effects of the Kratzer potential, hydrogenic impurity, external electric and magnetic fields. Physica E: Low-dimensional Systems and Nanostructures. 2016; 84: 175-81.
[18] Marcinkevičius S, Gushterov A, Reithmaier J. Transient electro-magnetically induced transparency in self-assembled quantum dots. Applied Physics Letters. 2008; 92(4): 041113.
[19] Barettin D, Houmark J, Lassen B, Willatzen M, Nielsen TR, Mørk J, et al. Optical properties and optimization of electromagnetically induced transparency in strained InAs/GaAs quantum dot structures. Physical Review B. 2009; 80(23): 235304.
[20] Harris S, Field J, Kasapi A. Dispersive properties of electromagnetically induced transparency. Physical Review A. 1992;46(1):R29.
[21] Fleischhauer M, Imamoglu A, Marangos JP. Electromagnetically induced transparency: Optics in coherent media. Reviews of modern physics. 2005; 77(2): 633.
[22] Kasapi A, Jain M, Yin G, Harris SE. Electromagnetically induced transparency: propagation dynamics. Physical review letters. 1995; 74(13): 2447.
[23] Scully MO, Zubairy MS. Quantum optics: Cambridge university press; 1997.
[24] Jahromi AS, Rezaei G. Electro-magnetically induced transparency in a two-dimensional quantum pseudo-dot system: Effects of geometrical size and external magnetic field. Physica B: Condensed Matter. 2015; 456: 103-7.
[25] Vaseghi B, Mohebi N. Effects of external fields, dimension and pressure on the electromagnetically induced transparency of quantum dots. Journal of Luminescence. 2013;134:352-7