[1] Pillai S, Catchpole K, Trupke T, Green M. Surface plasmon enhanced silicon solar cells. Journal of applied physics. 2007;101(9):093105.
[2] Huo N, Kang J, Wei Z, Li SS, Li J, Wei SH. Novel and enhanced optoelectronic performances of multilayer MoS2 – WS2 heteros-tructure transistors. Advanced Functional Materials. 2014; 24(44): 7025-31.
[3] Sergeant NP, Pincon O, Agrawal M, Peumans P. Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks. Optics express. 2009; 17(25): 22800-12.
[4] Song H, Jiang S, Ji D, Zeng X, Zhang N, Liu K, et al. Nanocavity absorption enhancement for two-dimensional material monolayer systems. Optics express. 2015; 23(6): 7120-30.
[5] Weismann M, Panoiu NC. Theoretical and computational analysis of second-and third-harmonic generation in periodically patterned graphene and transition - metal dichalcogenide monolayers. Physical Review B. 2016; 94(3): 035435.
[6] Zhang S, Zhang X. Strong second-harmonic generation from bilayer-graphene embedded in one-dimensional photonic crystals. JOSA B. 2016;33(3):452-60.
[5] Cheng J, Vermeulen N, Sipe J. Third order optical nonlinearity of graphene. New Journal of Physics. 2014; 16(5): 053014.
[8] Hendry E, Hale PJ, Moger J, Savchenko A, Mikhailov S. Coherent nonlinear optical response of graphene. Physical review letters. 2010; 105(9): 097401.
[9] Kumar N, Kumar J, Gerstenkorn C, Wang R, Chiu H-Y, Smirl AL, et al. Third harmonic generation in graphene and few-layer graphite films. Physical Review B. 2013;87(12):121406.
[10] Wang J, Hernandez Y, Lotya M, Coleman JN, Blau WJ. Broadband nonlinear optical response of graphene dispersions. Advanced Materials. 2009; 21(23): 2430-5.
[11] Feng M, Zhan H, Chen Y. Nonlinear optical and optical limiting properties of graphene families. Applied Physics Letters. 2010; 96(3): 033107.
[12] Yang H, Feng X, Wang Q, Huang H, Chen W, Wee AT, et al. Giant two-photon absorption in bilayer graphene. Nano letters. 2011; 11(7): 2622-7.
[13] Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, et al. Fine structure constant defines visual transparency of graphene. Science. 2008; 320 (5881): 1308.
[14] Liu J-T, Liu N-H, Li J, Jing Li X, Huang J-H. Enhanced absorption of graphene with one - dimensional photonic crystal. Applied Physics Letters. 2012; 101(5): 052104.
[15] Peres NM, Bludov YV. Enhancing the absorption of graphene in the terahertz range. EPL (Europhysics Letters). 2013; 101(5): 58002.
[16] Denisultanov A, Azbite S, Khodzitsky M, editors. Influence of magnetic field on the surface waves properties in the photonic crystal/graphene structure for terahertz frequency range. Journal of Physics: Conference Series; 2014: IOP Publishing.
[17] Hajian H, Soltani-Vala A, Kalafi M. Optimizing terahertz surface plasmons of a monolayer graphene and a graphene parallel plate waveguide using one-dimensional photonic crystal. Journal of Applied Physics. 2013; 114(3): 033102.
[18] Alaee R, Farhat M, Rockstuhl C, Lederer F. A perfect absorber made of a graphene micro-ribbon metamaterial. Optics express. 2012; 20(27): 28017-24.
[19] Palik E, Ghosh G. Handbook of optical constants of solids, Acad. Press, San Diego. 1998; 3.
[20] Vincenti M, De Ceglia D, Grande M, D’Orazio A, Scalora M. Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect. Optics letters. 2013; 38(18): 3550-3.
[21] Martinez A, Fuse K, Yamashita S. Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers. Applied Physics Letters. 2011; 99(12): 121107.