[1] E. Schrödinger, Die gegenwärtige Situation in der Quantenmechanik, Naturwiss 23 (1935) 807-812.
[2] S. Iqbal and F. Saif, Quantum recurrences in driven power-law potentials, Physics Letters A 356 (2006) 231-236.
[3] P. Roy, Quantum statistical properties of Gazeau–Klauder coherent state of the anharmonic oscillator, Opt. commun. 221 (2003) 145-152.
[4] R. Robinett, Wave packet revivals and quasirevivals in one-dimensional power law potentials, J. Math. Phys. 41 (2000) 1801-1813,.
[5] M. Al-Rajhi, Photon added coherent states for nonharmonic oscillators in a nonlinear Kerr medium, Mod. Phys. Lett. B 29 (2015) 1550035.
[6] E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 (1932) 749.
[7] J. Vaccaro, Number-phase Wigner function on Fock space, Phys. Rev. A 52 (1995) 3474.
[8] J. A. Vaccaro, New Wigner function for number and phase, Opt. commun. 113 (1995) 421-426.
[9] D. Pegg and S. Barnett, Phase properties of the quantized single-mode electromagnetic field, Phys. Rev. A, 39 (1989) 1665.
[10] B. Roy and P. Roy, Phase distribution of nonlinear coherent states, J. Opt. B: Quantum Semiclass. Opt., 1 (1999) 341.
[11] D. T. Pegg and S. M. Barnett, Unitary phase operator in quantum mechanics, Europhys. Lett. 6 (1998) 483.
[12] C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948) 379.
[13] K. Kraus, Complementary observables and uncertainty relations, Phys. Rev. D 35 (1987).3070.
[14] H. Maassen and J. B. M. Uffink, Generalized entropic uncertainty relations, Phys, Rev. Lett 60 (1988).1103.
[15] A. R. González, J. A. Vaccaro and S. M. Barnett, Entropic uncertainty relations for canonically conjugate operators, Phys. Lett. A 205 (1995) 247-254.
[16] H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics, Cambridge: Cambridge University Press (1988).