[1] Bravo Alvarez, L., Montejo-Sánchez, S., Rodríguez-López, L., Azurdia-Meza, C., & Saavedra, G. (2023). A review of hybrid vlc/rf networks: Features, applications, and future directions. Sensors, 23(17), 7545.
[2] Abuella, H., Elamassie, M., Uysal, M., Xu, Z., Serpedin, E., Qaraqe, K. A., & Ekin, S. (2021). Hybrid RF/VLC systems: A comprehensive survey on network topologies, performance analyses, applications, and future directions. IEEE Access, 9, 160402-160436.
[3] Ciftler, B. S., Alwarafy, A., & Abdallah, M. (2021). Distributed DRL-based downlink power allocation for hybrid RF/VLC networks. IEEE Photonics Journal, 14(3), 1-10.
[4] Ghazijahani, H. A., Abdollahzadeh, M., Seyedarabi, H., & Niya, M. J. M. (2016, September). Adaptive CSK modulation guaranteeing HEVC video quality over visible light communication network. In 2016 8th International symposium on telecommunications (IST) (pp. 789-794). IEEE.
[5] Arshad, R., & Lampe, L. (2021). Stochastic geometry analysis of user mobility in RF/VLC hybrid networks. IEEE Transactions on Wireless Communications, 20(11), 7404-7419.
[6] Kong, J., Ismail, M., Serpedin, E., & Qaraqe, K. A. (2019). Energy efficient optimization of base station intensities for hybrid RF/VLC networks. IEEE Transactions on Wireless Communications, 18(8), 4171-4183.
[7] Abuella, H., Elamassie, M., Uysal, M., Xu, Z., Serpedin, E., Qaraqe, K. A., & Ekin, S. (2021). Hybrid RF/VLC systems: A comprehensive survey on network topologies, performance analyses, applications, and future directions. IEEE Access, 9, 160402-160436.
[8] Mofarreh-Bonab, M., Seyedarabi, H., Mozaffari Tazehkand, B., & Kasaei, S. (2022). 3D hand pose estimation using RGBD images and hybrid deep learning networks. The Visual Computer, 1-10.
[9] Shao, S., Khan, Z., Liu, G., Khreishah, A., Ayyash, M., Elgala, H., ... & Rahaim, M. (2019, April). Optimizing handover parameters by Q-learning for heterogeneous RF-VLC networks. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (pp. 1069-1070). IEEE.
[10] Ghazijahani, H. A., Seyedarabi, H., Niya, J. M., & Cheung, N. M. (2019). Deep learning-assisted adaptive modulation level assignment for video communication over an elastic optical network. Optical Fiber Technology, 52, 101987.
[11] Hu, Q., Gan, C., Liu, X., Gong, G., & Zhu, Y. (2023). Dynamic handover cost modeling in hybrid VLC/RF networks. Ad Hoc Networks, 146, 103174.
[12] Feng, R., Guo, Y., Zain Yousaf, M., Khan, B., & Luo, L. (2025). Coverage analysis and handover strategy in RF/VLC heterogeneous networks. Applied Optics, 64(15), 4160-4173.
[13] Maimaiti, S., Huang, S., Zhang, K., Liu, X., Xu, Z., & Mi, J. (2025). Collaborative Online Learning-Based Distributed Handover Scheme in Hybrid VLC/RF 5G Systems. Electronics, 14(6), 1142.
[14] Sathisha, R. N., Ahmed, F., & Raghunathan, V. (2023, January). Demonstration of RF-VLC hand-over using receiver side channel selection. In 2023 15th International Conference on COMmunication Systems & NETworkS (COMSNETS) (pp. 382-386). IEEE.
[15] Zeshan, A., & Baykas, T. (2021). Location aware vertical handover in a VLC/WLAN hybrid network. IEEE Access, 9, 129810-129819.
[16] Guler, N. (2024). Vertical Handover-Based Hybrid Radio Frequency/Visible Light Communication Scheme for e-Health Applications (VHO-HeA). Engineered Science, 33, 1252.
[17] Narmanlioglu, O., & Uysal, M. (2021). Event-triggered adaptive handover for centralized hybrid VLC/MMW networks. IEEE Transactions on Communications, 70(1), 455-468.