نوع مقاله : پژوهشی

نویسندگان

1 پژوهشگر پسادکتری، گروه مهندسی برق، دانشکده مهندسی، دانشگاه شهید چمران اهواز، اهواز، ایران.

2 استاد، گروه مهندسی برق، دانشکده مهندسی، دانشگاه شهید چمران اهواز، اهواز، ایران.

3 استادیار، دانشکده مهندسی الکترونیک و مخابرات، انستیتو علوم و فناوری SRM، تیروچیراپالی، هند.

چکیده

در این پژوهش، یک سوئیچ جدید مبتنی بر تشدیدگر حلقوی پلاسمونی برای پنجره سوم مخابراتی پیشنهاد شده است. ساختار طراحی شده از یک حلقه در بستر نقره تشکیل شده که طوق آن اکسید باریم با نانو ذره‌های نقره است و ماده‌ای غیرخطی به شمار می‌رود. قرارگیری حلقه غیرخطی در فاصله 10 نانومتر از موجبر باعث می‌شود توان نور عبوری سبب تغییر ضریب شکست موثر حلقه شود و طول موج تشدید آن را تغییر دهد. وابستگی طول موج تشدید حلقه غیرخطی به توان پمپ نوری موجب تغییر در الگوی تداخلی موج درون حلقه با سیگنال عبوری می‌شود. این موضوع باعث می‌شود که بازده انتقال سیگنال قابل کنترل باشد و بتوان از ساختار به عنوان یک سوئیچ نوری استفاده کرد. نتایج شبیه‌سازی نشان می‌دهد که نسبت تمایز ساختار برابر dB 85/3 است که نسبت به برخی کارهای قبلی بیشتر است. مساحت ساختار طراحی شده، µm2 093/0 است که در مقایسه با پژوهش‌های پیشین یک ویژگی ممتاز به شمار می‌رود و در مدارهای مجتمع نوری مورد نیاز است. 

کلیدواژه‌ها

[1] M. J. Maleki, M. Soroosh, G. Akbarizadeh, S. S. Dhanabalan, High-performance 2-to-4 decoder using nonlinear ring resonators in photonic crystal platform, Optical and Quantum Electronics 56 (2024) 1480.
[2] M. J. Maleki, M. Soroosh, A. Mir, Improving the performance of 2-to-4 optical decoders based on photonic crystal structures, Crystals 12 (2019) 635.
[3] M. Zavvari, F. Mehdizadeh, Photonic crystal cavity with L3-defect for resonant optical filtering, Frequenz 68 (2014) 519-23.
[4] M. J. Maleki, M. Soroosh, G. Akbarizadeh, F. Parandin, F. Haddadan, Photonic Crystal Resonators in Designing Optical Decoders, Journal of Optoelectronical Nanostructures 8 (2023) 1-24.
[5] M. J. Maleki, M. Soroosh, F. Parandin, F. Haddadan, Photonic crystal-based decoders: ideas and structures. In Recent Advances and Trends in Photonic Crystal Technology, IntechOpen, 1st edition, (2023).
[6] A. A. Kashi, J. J. G. M. van der Tol, M. S. Lebby, X. Zhang, K. Williams and Y. Jiao, Ring-Assisted Mach-Zehnder Modulator on the InP Membrane on Silicon Platform, Journal of Lightwave Technology 42 (2024) 4553-4562.
[7] H. Yang, J. Li, X. Man, Z. Yin, Y. Wang, P. Hu, Operating point control method for the Mach-Zehnder modulator in a phase-shift laser range finder, Optics Express 32 (2024) 19881-19894.
[8] M. J. Maleki, M. Soroosh, G. Akbarizadeh, Low-Loss Optical Decoder for Surface Plasmon Polariton Transmission, 9th International Conference on Technology and Energy Management (ICTEM), Mazandaran (2024).
[9] M. J. Maleki, M. Soroosh, G. Akbarizadeh, A compact low-loss 2-to-4 plasmonic decoder based on suspended graphene for surface plasmon polariton transmission, Diamond and Related Materials 144 (2024) 110983.
[10] R. Rahad, M. A. Haque, M. O. Faruque, A. S. Mohsin, M. S. Mobassir, R. H. Sagor, A novel plasmonic MIM sensor using integrated 1× 2 demultiplexer for individual lab-on-chip detection of human blood group and diabetes level in the visible to near-infrared region, IEEE Sensors Journal 24 (2024) 12034-12041.
[11] H. R. Das, H. Mondal, Investigation of plasmonic material-based T-shaped high extinction ratio electro-absorption modulator with different dielectric materials, Optik 313 (2024) 171985.
[12] M. J. Maleki, M. Soroosh, G. Akbarizadeh, A subwavelength graphene surface plasmon polariton-based decoder, Diamond and Related Materials 134 (2023) 109780.
[13] M. J. Maleki, M. Soroosh, F. Haddadan, Graphene-Based Optical Waveguides for Surface Plasmon Polariton Transmission. In Optical Waveguide Technology and Applications, IntechOpen, 1st edition, (2024).
[14] M. J. Maleki, M. Soroosh, A low-loss subwavelength plasmonic waveguide for surface plasmon polariton transmission in optical circuits, Optical and Quantum Electronics 55 (2023) 1266.
[15] S. Khani, M. Danaie, P. Rezaei, Realization of a plasmonic optical switch using improved nano-disk resonators with Kerr-type nonlinearity: a theoretical and numerical study on challenges and solutions, Optics Communications 477 (2020) 126359.
[16] M. Pav, S. Pooretemad, N. Granpayeh, Ultra-fast all-optical plasmonic dual-band nonlinear off–on and two-port switches, Plasmonics 19 (2024) 111-121.
[17] H. Iizuka, S. Fan, Deep subwavelength plasmonic waveguide switch in double graphene layer structure, Applied Physics Letters 103 (2013) 233107.
[18] H. S. Chu, C. How Gan, Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays, Applied physics letters 102 (2013) 231107.
[19] J. Li, J. Tao, Z. H. Chen, X. G. Huang, All-optical controlling based on nonlinear graphene plasmonic waveguides, Optics express 24 (2016) 22169-22176.
[20] K. J. Ooi, J. L. Cheng, J. E. Sipe, L. K. Ang, D. T. Tan, Ultrafast, broadband, and configurable midinfrared all-optical switching in nonlinear graphene plasmonic waveguides, APL Photonics 1 (2016) 046101.
[21] F. Moradiani, M. Seifouri, K. Abedi, Design and Analysis of Plasmonic Switch at mid-IR Wavelengths with Graphene Nano-Ribbons, Journal of Research on Many-body Systems 8 (2018) 101-105.
[22] Z. Liu, J. Zhou, X. Liu, G. Fu, G. Liu, C. Tang, J. Chen, High-Q plasmonic graphene absorbers for electrical switching and optical detection, Carbon 166 (2020) 256-264.
[23] M. J. Maleki, M. Soroosh, G. Akbarizadeh, Design and simulation of compact subwavelength electro-optic switch based on graphene surface plasmon polaritons, Biquarterly Journal of Optoelectronic 6 (2023) 41-50.
[24] M. J. Maleki, M. Soroosh, F. K. AL-Shammri, A. G. Alkhayer, H. Mondal, Design and Simulation of a Compact Subwavelength Graphene-Based Switch for Surface Plasmon Polariton Transmission in Integrated Optoelectronic Circuits, Plasmonics, Published online (2024) 1-13.
[25] Z. Zhang, J. Yang, X. He, Y. Han, J. Zhang, J. Huang, D. Chen, S. Xu, All-optical multi-channel switching at telecommunication wavelengths based on tunable plasmon-induced transparency, Optics Communications 425 (2018) 196-203.
[26] P. Mulvaney, Surface plasmon spectroscopy of nanosized metal particles, Langmuir 12 (1996) 788-800.
[27] E. D. Palik, Handbook of optical constants of solids, Academic press 3 (1998).
[28] S. Collin, F. Pardo, J. L. Pelouard, Waveguiding in nanoscale metallic apertures, Optics Express 7 (2007) 4310-4320.
[29] J. Park, H. Kim, B. Lee, High order plasmonic bragg reflection in the metal-insulator-metal waveguide bragg grating, Optics Express 16 (2008) 413–425.
[30] Q. Li, T. Wang, Y. K. Su, M. Yan, M. Qiu, Coupled mode theory analysis of mode-splitting in coupled cavity system, Optics Express 18 (2010) 8367–8382.
[31] M. J. Maleki, M. Soroosh, An ultra-fast all-optical 2-to-1 digital multiplexer based on photonic crystal ring resonators, Optical and Quantum Electronics 54 (2022) 397.
[32] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, Silicon microring resonators, Laser & Photonics Reviews 6 (2012) 47-73.
[33] M. J. Maleki, M. Soroosh, G. Akbarizadeh, Design and Simulation of Compact Plasmonic Decoder with High Contrast Ratio for Propagation of Graphene Surface Plasmon Polaritons, Quarterly Journal of Optoelectronic 6 (2023) 11-18.