[1] M. J. Maleki, M. Soroosh, G. Akbarizadeh, S. S. Dhanabalan, High-performance 2-to-4 decoder using nonlinear ring resonators in photonic crystal platform, Optical and Quantum Electronics 56 (2024) 1480.
[2] M. J. Maleki, M. Soroosh, A. Mir, Improving the performance of 2-to-4 optical decoders based on photonic crystal structures, Crystals 12 (2019) 635.
[3] M. Zavvari, F. Mehdizadeh, Photonic crystal cavity with L3-defect for resonant optical filtering, Frequenz 68 (2014) 519-23.
[4] M. J. Maleki, M. Soroosh, G. Akbarizadeh, F. Parandin, F. Haddadan, Photonic Crystal Resonators in Designing Optical Decoders, Journal of Optoelectronical Nanostructures 8 (2023) 1-24.
[5] M. J. Maleki, M. Soroosh, F. Parandin, F. Haddadan, Photonic crystal-based decoders: ideas and structures. In Recent Advances and Trends in Photonic Crystal Technology, IntechOpen, 1st edition, (2023).
[6] A. A. Kashi, J. J. G. M. van der Tol, M. S. Lebby, X. Zhang, K. Williams and Y. Jiao, Ring-Assisted Mach-Zehnder Modulator on the InP Membrane on Silicon Platform, Journal of Lightwave Technology 42 (2024) 4553-4562.
[7] H. Yang, J. Li, X. Man, Z. Yin, Y. Wang, P. Hu, Operating point control method for the Mach-Zehnder modulator in a phase-shift laser range finder, Optics Express 32 (2024) 19881-19894.
[8] M. J. Maleki, M. Soroosh, G. Akbarizadeh, Low-Loss Optical Decoder for Surface Plasmon Polariton Transmission, 9th International Conference on Technology and Energy Management (ICTEM), Mazandaran (2024).
[9] M. J. Maleki, M. Soroosh, G. Akbarizadeh, A compact low-loss 2-to-4 plasmonic decoder based on suspended graphene for surface plasmon polariton transmission, Diamond and Related Materials 144 (2024) 110983.
[10] R. Rahad, M. A. Haque, M. O. Faruque, A. S. Mohsin, M. S. Mobassir, R. H. Sagor, A novel plasmonic MIM sensor using integrated 1× 2 demultiplexer for individual lab-on-chip detection of human blood group and diabetes level in the visible to near-infrared region, IEEE Sensors Journal 24 (2024) 12034-12041.
[11] H. R. Das, H. Mondal, Investigation of plasmonic material-based T-shaped high extinction ratio electro-absorption modulator with different dielectric materials, Optik 313 (2024) 171985.
[12] M. J. Maleki, M. Soroosh, G. Akbarizadeh, A subwavelength graphene surface plasmon polariton-based decoder, Diamond and Related Materials 134 (2023) 109780.
[13] M. J. Maleki, M. Soroosh, F. Haddadan, Graphene-Based Optical Waveguides for Surface Plasmon Polariton Transmission. In Optical Waveguide Technology and Applications, IntechOpen, 1st edition, (2024).
[14] M. J. Maleki, M. Soroosh, A low-loss subwavelength plasmonic waveguide for surface plasmon polariton transmission in optical circuits, Optical and Quantum Electronics 55 (2023) 1266.
[15] S. Khani, M. Danaie, P. Rezaei, Realization of a plasmonic optical switch using improved nano-disk resonators with Kerr-type nonlinearity: a theoretical and numerical study on challenges and solutions, Optics Communications 477 (2020) 126359.
[16] M. Pav, S. Pooretemad, N. Granpayeh, Ultra-fast all-optical plasmonic dual-band nonlinear off–on and two-port switches, Plasmonics 19 (2024) 111-121.
[17] H. Iizuka, S. Fan, Deep subwavelength plasmonic waveguide switch in double graphene layer structure, Applied Physics Letters 103 (2013) 233107.
[18] H. S. Chu, C. How Gan, Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays, Applied physics letters 102 (2013) 231107.
[19] J. Li, J. Tao, Z. H. Chen, X. G. Huang, All-optical controlling based on nonlinear graphene plasmonic waveguides, Optics express 24 (2016) 22169-22176.
[20] K. J. Ooi, J. L. Cheng, J. E. Sipe, L. K. Ang, D. T. Tan, Ultrafast, broadband, and configurable midinfrared all-optical switching in nonlinear graphene plasmonic waveguides, APL Photonics 1 (2016) 046101.
[21] F. Moradiani, M. Seifouri, K. Abedi, Design and Analysis of Plasmonic Switch at mid-IR Wavelengths with Graphene Nano-Ribbons, Journal of Research on Many-body Systems 8 (2018) 101-105.
[22] Z. Liu, J. Zhou, X. Liu, G. Fu, G. Liu, C. Tang, J. Chen, High-Q plasmonic graphene absorbers for electrical switching and optical detection, Carbon 166 (2020) 256-264.
[23] M. J. Maleki, M. Soroosh, G. Akbarizadeh, Design and simulation of compact subwavelength electro-optic switch based on graphene surface plasmon polaritons, Biquarterly Journal of Optoelectronic 6 (2023) 41-50.
[24] M. J. Maleki, M. Soroosh, F. K. AL-Shammri, A. G. Alkhayer, H. Mondal, Design and Simulation of a Compact Subwavelength Graphene-Based Switch for Surface Plasmon Polariton Transmission in Integrated Optoelectronic Circuits, Plasmonics, Published online (2024) 1-13.
[25] Z. Zhang, J. Yang, X. He, Y. Han, J. Zhang, J. Huang, D. Chen, S. Xu, All-optical multi-channel switching at telecommunication wavelengths based on tunable plasmon-induced transparency, Optics Communications 425 (2018) 196-203.
[26] P. Mulvaney, Surface plasmon spectroscopy of nanosized metal particles, Langmuir 12 (1996) 788-800.
[27] E. D. Palik, Handbook of optical constants of solids, Academic press 3 (1998).
[28] S. Collin, F. Pardo, J. L. Pelouard, Waveguiding in nanoscale metallic apertures, Optics Express 7 (2007) 4310-4320.
[29] J. Park, H. Kim, B. Lee, High order plasmonic bragg reflection in the metal-insulator-metal waveguide bragg grating, Optics Express 16 (2008) 413–425.
[30] Q. Li, T. Wang, Y. K. Su, M. Yan, M. Qiu, Coupled mode theory analysis of mode-splitting in coupled cavity system, Optics Express 18 (2010) 8367–8382.
[31] M. J. Maleki, M. Soroosh, An ultra-fast all-optical 2-to-1 digital multiplexer based on photonic crystal ring resonators, Optical and Quantum Electronics 54 (2022) 397.
[32] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, Silicon microring resonators, Laser & Photonics Reviews 6 (2012) 47-73.
[33] M. J. Maleki, M. Soroosh, G. Akbarizadeh, Design and Simulation of Compact Plasmonic Decoder with High Contrast Ratio for Propagation of Graphene Surface Plasmon Polaritons, Quarterly Journal of Optoelectronic 6 (2023) 11-18.