نوع مقاله : پژوهشی

نویسندگان

1 استادیار، گروه فیزیک، دانشگاه پیام نور، تهران، ایران.

2 دانشیار، گروه فیزیک، دانشگاه پیام نور، تهران، ایران.

چکیده

در این مقاله با دوپینگ جایگزینی فلزات دوره‌های 3d، 4d و 5d روی تک لایه PdS2 خواص الکترونی مطالعه شده است. نتایج به‌دست آمده نشان می‌دهد که در دوپینگ جایگزینی فلزات 3d(Sc, Fe)، 4d(Y, Ru, Rh) و 5d(Os) به جای یک اتم  سطح فرمی یا به داخل  شیفت پیدا کرده یا اینکه زیر  و نزدیک آن واقع شده است. بنابراین؛ ساختار رفتار نیم‌هادی پذیرنده دارد. اما برای دوپینگ فلزات 3d(Ti, Cr, Co)، 4d(Zr, Mo) و 5d(Hf, W, Ir, Au) سطح فرمی به داخل  نفوذ کرده یا اینکه بالای  و نزدیک آن واقع شده است. در این حالت ساختار دوپینگ شده نقش نیم‌هادی دهنده بازی می‌کند. اما ساختار الکترونی PdS2 در اثر دوپینگ فلزات 3d(Ni, Zn)، 4d(Pd, Cd) و 5d(Pt, Hg) تغییر کرده و همچنان نیم‌هادی داتی باقی می‌ماند به‌گونه‌ای که بیشترین گاف انرژی مربوط به همین فلزات است. دوپینگ فلزات 3d(V, Mn, Cu)، 4d(Nb, Tc, Ag) و 5d(Ta, Re) ساختار الکترونی سیستم را به کلی تغییر داده و سیستم تبدیل به رسانا می‌شود. این تغییرات متنوع اسپینی در ترکیبات فوق می‌تواند اساس ایده‌های علمی برای ساخت وسایل اسپینرونیک تلقی شود. 

کلیدواژه‌ها

[1] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
[2] Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, B. Huang, Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys. Chem. Chem. Phys. 13, 15546–15553 (2011).
[3] F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, M. Polini, Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).
[4] Gholami M, Ebrahimi Sarai M, Hassanpour M. Tunable magnetic induction of 1T-NiTe2 monolayer via V, Cr, Mn and Fe Transition metals atomic doping. Quarterly Journal of Optoelectronic. 2022 Aug 23;4(2):65-72.
[5] Gholami M, Nazari A, Azarin K, Yazdanimeher S, Sadeghniya B. Determination of the thickness and optical constants of metal oxide thin films by different methods. J. Basic Appl. Sci. Res. 2013;3(5):597-600.
[6] Hajakbari F, Hojabri A, Gholami M, Ghoranneviss M. Calculation of Cu2O thin film optical constants using the transmittance data. ISPC Proceedings, Bochum. 2009.
[7] Askarian A, Parandin F. Investigations of all-optical gates based on linear photonic crystals using the PSK technique and beam interference effect. Electromagnetics. 2023 Jul 4;43(5):291-308.
[8] Parandin F. Ultra-compact and low delay time all optical half adder based on photonic crystals. Optical and Quantum Electronics. 2023 May;55(5):398.
[9] Askarian A, Parandin F, Bagheri N, Velez FJ. Ultra-fast and compact optical Galois field adder based on the LPhC structure and phase shift keying. Applied Optics. 2024 Mar 10;63(8):1939-46.
[10] Parandin F, Mohammadi M. Compact all-optical decoder design for optical integrated circuits. Applied Optics. 2023 Jul 10;62(20):5355-9.
[11] Parandin F, Sheykhian A. Designing a circuit for high-speed optical logic half subtractor. International Journal of Circuits, Systems and Signal Processing. 2022;16:887-91.
[12] Parandin F, Karkhanehchi MM. Low size all optical XOR and NOT logic gates based on two-dimensional photonic crystals. Majlesi J. Electr. Eng. 2019 Jun 1;13(2):1-5.
[13] Parandin F, Sheykhian A, Bagheri N. A novel design for an ultracompact optical majority gate based on a ring resonator on photonic crystal substrate. Journal of computational electronics. 2023 Apr;22(2):716-22.
[14] Parandin F, Bagheri N. Design of a 2× 1 multiplexer with a ring resonator based on 2D photonic crystals. Results in Optics. 2023 May 1;11:100375.
[15] Jafari, A. , Ghoranneviss, M. , Gholami, M. and Mostahsan, N. , 2015. The role of deposition temperature and catalyst thickness in graphene domains on Cu. International Nano Letters, 5, pp. 199-204.
[16] Rezazadeh H, Hantehzadeh M, Boochani A. Investigation of the Electronic, Magnetic and Optical Properties of PtFeBi Half-Heusler Aand Its (001) Surfaces by Density Functional Theory Method. Biquarterly Journal of Optoelectronic. 2021 Aug 23;3(2):97-104.
[17] Rezazadeh H. Investigation of the elastic, mechanical, electronic, magnetic and optical properties of NbBiCs half-Heusler by density functional theory method. Biquarterly Journal of Optoelectronic. 2022 Aug 23;4(2):57-64.
[18] Rezazadeh H, Hantehzadeh M, Boochani A. Surface Effect on Electronic, Magnetic and Optical Properties of PtMnBi Half-Heusler: A DFT Study. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2022 Aug;16(4):548-61.
[19] G. Fiori, et al. , Electronics based on two-dimensional materials, Nat. Nanotechnol. 9 (10) 768–779 (2014).
[20] D. Jariwala, et al. , Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides, ACS Nano 8 (2) 1102–1120 (2014).
[21] D. Somvanshi, S. Jit, Transition metal dichalcogenides based two-dimensional heterostructures for optoelectronic applications, 2D Nanoscale Heterostruct. Mater. Synth. Prop. Appl. 125 (2020).
[22] P. Luo, et al. , Doping engineering and functionalization of two-dimensional metal chalcogenides, Nanoscale Horiz. 4 (1) (2019) 26–51.
[23] A. Bafekry, et al. , Van der Waals heterostructures of MoS2 and Janus MoSSe monolayers on graphitic boron-carbon-nitride (BC3, C3N, C3N4 and C4N3) nanosheets: a first-principles study, J. Phys. D Appl. Phys. 53 . (2020)
[24] H. -P. Komsa, A. V. Krasheninnikov, Two-dimensional transition metal dichalcogenide alloys: Stability and electronic properties. J. Phys. Chem. Lett. 3, 3652–3656 (2012).
[25] V. Klee, E. Preciado, D. Barroso, A. E. Nguyen, C. Lee, K. J. Erickson, M. Triplett, B. Davis, I. -H. Lu, S. Bobek, J. Mckinley, J. P. Martinez, J. Mann, A. A. Talin, L. Bartels, F. Léonard, Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1–x)Se2x alloy devices. Nano Lett. 15, 2612–2619 (2015).
[26] J. Kang, S. Tongay, J. Li, J. Wu, Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing. J. Appl. Phys. 113, 143703 (2013).
[27] N. Onofrio, D. Guzman, A. Strachan, Novel doping alternatives for single-layer transition metal dichalcogenides, J. Appl. Phys. 122 (18) 185102 (2017).
[28] K. Dolui, et al. , Possible doping strategies for MoS2 monolayers: an ab initio study, Phys. Rev. B 88 (7) 075420 (2013).
[29] D. Jariwala, et al. , Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides, ACS Nano 8 (2) 1102–1120 (2014).
[30] P. Luo, et al. , Doping engineering and functionalization of two-dimensional metal chalcogenides, Nanoscale Horiz. 4 (1) 26–51 (2019).
[31] D. Somvanshi, S. Jit, Transition metal dichalcogenides based two-dimensional heterostructures for optoelectronic applications, 2D Nanoscale Heterostruct. Mater. Synth. Prop. Appl. 125 (2020).
[32] C. -H. Chang, et al. , Orbital analysis of electronic structure and phonon dispersion in MoS2, MoSe2, WS2, and WSe2 monolayers under strain, Phys. Rev. B 88 (19) 195420 (2013).
[33] S. K. Pandey, et al. , Controlled p-type substitutional doping in large-area monolayer WSe2 crystals grown by chemical vapor deposition, Nanoscale 10 (45) 21374–21385 (2018).
[34] Sayantika Chowdhury, P. Venkateswaran, Divya Somvanshi. , A systematic study on the electronic structure of 3d, 4d, and 5d transition metal-doped WSe2 monolayer, Superlattices and Microstructures 148 ,106746 (2020).
[35] F. Grønvold and E. Røst, The crystal structure of PdSe2 and PdS2, Acta Crystallogr. 10, 329 (1957).
[36] L. Pi, L. Li, K. Liu, Q. Zhang, H. Li, and T. Zhai, Recent progress on 2D noble-transition-metal dichalcogenides, Adv. Funct. Mater. 29, 1904932 (2019).
[37] R. Kempt, A. Kuc, and T. Heine, Two-dimensional noble-metal chalcogenides and phosphochalcogenides, Angew. Chem. Int. Ed. 59, 2 (2020).
[38] S. Deng, L. Li, and Y. Zhang, Strain modulated electronic, mechanical, and optical properties of the monolayer PdS2, PdSe2, and PtSe2 for tunable devices, ACS Appl. Nano Mater. 1, 1932 (2018).
[39] Wen Lei, Wei Wang, Xing Ming, et al. , Structural transition, metallization, and superconductivity in quasi-two-dimensional layered PdS2 under compression, Physical Review B 101, 205149 (2020).
[40] Gholami, M. , Golsanamlou, Z. & Rahimpour Soleimani, H. Effects of 3d transition metal impurities and vacancy defects on electronic and magnetic properties of pentagonal Pd2S4: competition between exchange splitting and crystal fields. Sci Rep 12, 10838 (2022).
[41] Gholami, Mojtaba, and Hamid Rahimpour Soleimani. "Magnetic and electronic properties of Pd2S4 monolayer dichalcogenide under doping of atoms adjacent to sulfur atom. " Biquarterly Journal of Optoelectronic 4, no. 1 (2022): 105-111.