نوع مقاله : پژوهشی

نویسنده

گروه علوم پایه، واحد گرمسار،دانشگاه آزاد اسلامی، گرمسار، ایران

چکیده

در این مقاله، یک سلول خورشیدی پروسکایت دوگانه بدون سرب مورد مطالعۀ عددی قرار گرفته است و اثر آرایه‌های تناوبی نانوذرات کروی طلای پوشش داده شده با نانو میله‌های سیلیکا[1] و تیتانیا[2] روی کارایی سلول خورشیدی مطالعه شده و با اثر آرایۀ نانوذرات طلای خالص مقایسه شده است. ساختار سلول خورشیدی پروسکایت پیشنهادی به صورت p-i-n بوده و معماری آن به صورتITO/PEDOT: PSS/ Cs2AgBiBr6/ TiO2/Ag است. در این مطالعه از روش تفاضل المان محدود در حوزه زمانی سه بعدی با استفاده از ماژول FDTD پکیج نرم‌افزاری Ansys-Lumerical استفاده شده است. این مطالعه در محدوۀ طول موج نور فرابنفش، 300 نانومتر تا مادون قرمز نزدیک، 1100 نانومتر انجام شده و طیف جذب نور، شدت میدان الکتریکی، نرخ تولید زوج الکترون- حفره، چگالی جریان اتصال کوتاه و جریان خروجی از سلول خورشیدی محاسبه گردیده است. در این تحقیق مشاهده شد که تاثیر Au@TiO2 در افزایش کارایی سلول خورشیدی بیشتر از بقیه نانوذرات است. نتایج این مطالعه نشان می‌دهد که به کار بردن نانوذرات Au@Tio2 باعث افزایش 8/17% جریان الکتریکی خروجی از سلول و افزایش 85/17% جریان اتصال کوتاه می‌شود. همچنین وجود این نانوذرات سبب افزایش 100 برابری ماکزیمم نرخ تولید الکترون- حفره شده است. این افزایش کارایی می‌تواند به دلیل میدان نزدیک پلاسمونی و نوع پراکندگی امواج از طریق این ذرات باشد. همچنین با تغییر مکان نانو آرایه Au@SiO2 در قسمت بالایی، میانی و پایینی لایه پروسکایت، تاثیر مکان نانوذرات بر روی کارایی سلول‌های خورشیدی مطالعه شد.
 
[1] Au@SiO2
[2] Au@TiO2

کلیدواژه‌ها

[1] W. Shen, Y. Zhao , and F. Liu, “Highlights of mainstream solar cell efficiencies in 2021”, Front. Energy 16, 1-8 (2022).
[2] M. Ijaz, A. Shoukat, A. Ayub, H. Tabassum, H. Naseer, R. Tanveer, A. Islam, and T. Iqbal, “Perovskite solar cells: importance, challenges, and plasmonic enhancement”, Int. J. Green Energy 17, 1022 (2020).
[3] N. Ahmadi, “The effect of plasmonic nanoparticles and the thickness of anode interface layer on the efficiency enhancement of organic solar cells”, Phys. Scr. 96, 125843 (2021)
[4] M.A. Green, “The path to 25% silicon solar cell efficiency: History of silicon cell evolution”, Prog. Photovolt. Res. Appl. 17, 183 (2009).
[5] M. Jeong, I.W. Choi, E.M. Go, Y. Cho, M. Kim, B. Lee, S. Jeong, Y. Jo, H.W. Choi, J. Lee, and J.H. Bae, “ Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss”, Science 369, 1615 (2020).
[6] J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grtzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells”, Nature 499, 316 (2013).
[7] J. Huang, M. Wang, L. Ding, J. Deng, and X. Yao, “Efficiency enhancement of the MAPbI3− xClx-based perovskite solar cell by a two-step annealing procedure” Semicond. Sci. Technol 31, 025009 (2016).
[8] A. Bibi, I. Lee, Y. Nah, O. Allam, H. Kim, L.N. Quan, J. Tang, A. Walsh, S.S. Jang, E.H. Sargent, and D.H. Kim, “Lead-free halide double perovskites: Toward stable and sustainable optoelectronic devices " Mater. Today 49, 123 (2021).
[9] C. Wu, Q. Zhang, Y. Liu, W. Luo, X. Guo, Z. Huang, H. Ting, W. Sun, X. Zhong, S. Wei, and S. Wang, “The Dawn of Lead-Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film”, Adv. Sci. 5, 1700759 (2018).
[10] Y. Yang, and J. You, “The Dawn of Lead-Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film”, Nature News 544, 155 (2017).
[11] J. Wang, J. Dong, F. Lu, C. Sun, Q. Zhang, and N. Wang, “Two-dimensional lead-free halide perovskite materials and devices”, J. Mater. Chem. A 7, 23563 (2019).
[12] W. Ke, and M.G. Kanatzidis, “Prospects for low-toxicity lead-free perovskite solar cells”, Nature Commun. 10, 1 (2019).
[13] C. Kang, H. Rao, Y. Fang, J. Zeng, Z. Pan, and X. Zhong, “Antioxidative Stannous Oxalate Derived Lead‐Free Stable CsSnX3 (X=Cl, Br, and I) Perovskite Nanocrystals”, Angew. Chem. 133, 670 (2021).
[14] Z. Liu, S. Dai, Y. Wang, B. Yang, D. Hao, D. Liu, Y. Zhao, L. Fang, Q. Ou, S. Jin, J. Zhao, and J. Huang, “Photoresponsive Transistors Based on Lead-Free Perovskite and Carbon Nanotubes”, Adv. Funct. Mater. 30, 1906335 (2020).
[15] F. Locardi, M. Cirignano, D. Baranov, Z. Dang, M. Prato, F. Drago, M. Ferretti, V. Pinchetti, M. Ferretti, V. Pinchetti, M. Fanciulli, S. Brovelli, L. De Trizio, and L. Manna, “Colloidal Synthesis of Double Perovskite Cs2AgInCl6 and Mn-Doped Cs2AgInCl6 Nanocrystals”, J. Am. Chem. Soc. 140, 12989 (2018).
[16] N. Ito, M.A. Kamarudin, D. Hirotani, Y. Zhang, Q. Shen, Y. Ogomi, S. Iikubo, T. Minemoto, K. Yoshino, and S. Hayase, “Mixed Sn–Ge Perovskite for Enhanced Perovskite Solar Cell Performance in Air”, J. Phys. Chem. Lett. 9, 1682 (2018).
[17] A. Iefanova, N. Adhikari, A. Dubey, D. Khatiwada, and Q. Qiao, “Lead free CH3NH3SnI3 perovskite thin-film with p-type semiconducting nature and metal-like conductivity”, AIP Adv. 6, 085312 (2016).
[18] C. Wu, Q. Zhang, Y. Liu, W. Luo, X. Guo, Z. Huang, H. Ting, W. Sun, X. Zhong, S. Wei, and S. Wang, “The Dawn of Lead-Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film”, Adv. Sci. 5, 1700759 (2018).
[19] N. Ahmadi, “Photonic crystal for efficiency enhancement of thesemitransparent organic solar cells”, Phys. Scr. 97, 105806 (2022).
[20] M. Ghidelli, L. Mascaretti, B.R. Bricchi, A. Brognara, T.A. Afifi, V. Russo, C.S. Casari, and A.L. Bassi, “Light management in TiO2 thin films integrated with Au plasmonic nanoparticles”, Semicond. Sci. Technol. 35, 035016 (2020).
[21] A. Abbasiyan, M. Noori, and H. Baghban, “Investigation of quasi-periodic structures to increase the efficiency of thin-film silicon solar cells: A comparative study”, Sol. Energy Mater, Sol. Cells. 202, 110129 (2019).
[22] M. Bajpai, R. Srivastava, and R. Dhar, “Effect of plasmonic enhancement of light absorption on the efficiency of polymer solar cell”, Springer Proceedings in Physics 178, 315 (2017).
[23] Y. Cui, H. Zhao, F. Yang, P. Tong, Y. Hao, Q. Sun, F. Shi, Q. Zhan, H. Wang, and F. Zhu, “Efficiency enhancement in organic solar cells by incorporating silica-coated gold nanorods at the buffer/active interface ”, J. Mater. Chem. C 3, 9859 (2015).
[24] J. Zheng, X. Cheng, H. Zhang, X. Bai, R. Ai, L. Shao, and J. Wang, “Gold Nanorods: The Most Versatile Plasmonic Nanoparticles” Chem. Rev. 121, 13342 (2021).
[25] C.W. Chen, S.Y. Hsiao, C.Y. Chen, H.W. Kang, Z.Y. Huang, and H.W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells”, J. Mater. Chem. A 3, 9152 (2015).
[26] J.R. Devore, “Refractive indices of rutile and sphalerite”, J. Opt. Soc. Am. 41, 416 (1951).
[27] R.J. Moerland, and J.P. Hoogenboom, “Subnanometer-accuracy optical distance ruler based on fluorescence quenching by transparent conductors”, Optica 3, 112 (2016).
[28] P.B. Johnson, and R.W. Christy, “Optical constants of the noble metals”, Phys. Rev. B 6, 4370 (1972).
[29] H.J. Jöbsis, V.M. Caselli, S.H.C. Askes, E. C. Garnett, T. J. Savenije, F.T. Rabouw, and E. M. Hutter, “Recombination and localization: Unfolding the pathways behind conductivity losses in Cs2AgBiBr6 thin films”, Appl. Phys. Lett. 119, 131908 (2021).
[30] C.Z. Tan, “X-ray diffraction of densified silica glass”, J. Non-Cryst. 223, 158 (1998).
[31] H. Talebi, and F. Emami,” Broadband plasmonic absorption enhancement of perovskite solar cells with embedded Au@ SiO2@ graphene core–shell nanoparticles”, Semicond. Sci. Technol. 37, 055002 -1 (2022).
[32] H. M. Abdulla, R. Thomas, and R.S. Swathi,” Overwhelming analogies between plasmon hybridization theory and molecular orbital theory revealed: The story of plasmonic heterodimers” J. Phys. Chem. C 122, 73828 (2018).
[33] A.Rehman, A.U. Rehman, M. Aslam, N. Muhammad, M.A. Saeed, “Optimization of Hollow Materials-Based Electron Transport Layer for Enhanced Performance of Perovskite Solar Cell ”, Plasmonic 023-02057-8 ( 2023).
[34] N. Ahmadi, and M.A. Alkhalayfeh “Plasmonic absorption enhancement of MAPI-based perovskite solar cell with nanoparticles array”, Optik 302, 171726 (2024).