نوع مقاله : پژوهشی

نویسندگان

1 استادیار دانشگاه آزاد واحد ارس

2 دکتری، دانشکده مهندسی برق الکترونیک، دانشگاه صنعتی سهند تبریز، تبریز، ایران

چکیده

در این مطالعه مقایسه‌ای، هدف ما طراحی یک راکتور تخلیه سد دی‌الکتریک (DBD) تحت فشار اتمسفر است. نیاز فعلی، مشخص کردن ویژگی‌های پلاسما و بهینه‌سازی سیستم پلاسمای طراحی شده در شرایط متغیر است. در این مقاله، شبیه‌سازی تک بعدی وابسته به زمان یک دستگاه DBD، هدایت شده توسط یک ولتاژ RF سینوسی با دامنه 755 کیلو ولت در 52 کیلوهرتز، در گاز آرگون نشان داده شده است. دستگاه DBD با دو الکترود پوشیده شده توسط ماده دی‌الکتریک و با ثابت دی‌الکتریک متغیر بین 2، 5 و 8 در نظر گرفته شد و پارامترهای تخلیه بر حسب زمان شبیه‌سازی شدند. در سراسر شکاف پلاسما برای یافتن یک ثابت دی‌الکتریک بهینه برای رسوب حداکثر توان، با استفاده از اعمال یک ولتاژ سینوسی به دستگاه DBD با ثابت دی‌الکتریک مختلف، پروفایل‌های میدان الکتریکی، الکترون چگالی، دمای الکترون، کسر جرمی اتم‌های آرگون، میانگین انرژی الکترون، چگالی جریان یون، چگالی جریان الکترون، پلاسما، جریان کل و رسوب توان نشان داده شده‌اند

کلیدواژه‌ها

[1] E. Poorreza and N. Dadashzadeh Gargari, "Study of the Time Dependence and One Dimentional Simulation of a Dielectric Barrier Discharge Reactor Driven by Sinusoidal High-Frequency Voltage," Russian Journal of Physical Chemistry B, vol. 17, no. 3, pp. 631-645, 2023 doi: 10.1134/S1990793123030107.
[2] E. Poorreza and N. Dadashzadeh Gargari, "Modeling and Simulation of a Microwave-Assisted Plasma with Different Input Power for Plasma-Based Applications," Russian Journal of Physical Chemistry B, vol. 17, no. 3, pp. 719-724, 2023/06/01 2023, doi: 10.1134/S1990793123030235.
[3] N. Dadashzadeh, "Optimization of Electricity Consumption using Dielectric Barrier Discharge Method (DBD)," Majlesi Journal of Electrical Engineering, vol. 17, no. 1, 2023.
[4] V. Shumova, D. Polyakov, and L. Vasilyak, "Thermophoresis in plasma with structures of charged dust particles," Russian Journal of Physical Chemistry B, vol. 14, pp. 666-669, 2020.
[5] K. Sergeichev, N. Lukina, L. Apasheva, E. Ovcharenko, and A. Lobanov, "Water Activated by a Microwave Plasma Argon Jet as a Factor Stimulating the Germination of Plant Seeds," Russian Journal of Physical Chemistry B, vol. 16, no. 1, pp. 84-89, 2022.
[6] S. Das, G. Dalei, and A. Barik, "A dielectric barrier discharge (DBD) plasma reactor: An efficient tool to measure the sustainability of non-thermal plasmas through the electrical breakdown of gases," in IOP Conference Series: Materials Science and Engineering, 2018, vol. 410, no. 1: IOP Publishing, p. 012004.
[7] c. S. Ivković, B. Obradović, and M. Kuraica, "Electric field measurement in a DBD in helium and helium–hydrogen mixture," Journal of Physics D: Applied Physics, vol. 45, no. 27, p. 275204, 2012.
[8] F. Sohbatzadeh and H. Soltani, "Time-dependent one-dimensional simulation of atmospheric dielectric barrier discharge in N2/O2/H2O using COMSOL Multiphysics," Journal of Theoretical and Applied Physics, vol. 12, no. 1, pp. 53-63, 2018.
[9] C. Hertwig, N. Meneses, and A. Mathys, "Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: A review," Trends in Food Science & Technology, vol. 77, pp. 131-142, 2018.
[10] S. Saidi, H. Loukil, K. Khodja, A. Belasri, B. Caillier, and P. Guillot, "Experimental and Theoretical Investigations of Dielectric Barrier Discharge (DBD) Lamp in Ne/Xe Mixture," IEEE Transactions on Plasma Science, 2022.
[11] A. Barjasteh and E. Eslami, "Numerical investigation of effect of driving voltage pulse on low pressure 90% Ar–10% Cl2 dielectric barrier discharge," Plasma Chemistry and Plasma Processing, vol. 38, no. 1, pp. 261-279, 2018.
[12] A. Barjasteh, Z. Dehghani, P. Lamichhane, N. Kaushik, E. H. Choi, and N. K. Kaushik, "Recent progress in applications of non-thermal plasma for water purification, bio-sterilization, and decontamination," Applied Sciences, vol. 11, no. 8, p. 3372, 2021.
[13] V. Shumova, D. Polyakov, and L. Vasilyak, "The Chemi-ionization Rate Constant of Metastable Neon Atoms in a Glow Discharge at Cryogenic Temperature," Russian Journal of Physical Chemistry B, vol. 15, pp. 691-695, 2021.
[14] V. Shumova, D. Polyakov, and L. Vasilyak, "Influence of Metastable Atoms on the Heating of Microparticles in the Plasma of a Gas Discharge in Neon," Russian Journal of Physical Chemistry B, vol. 16, no. 5, pp. 912-916, 2022.
[15] K. Kostov, Y. Hamia, R. Mota, A. Dos Santos, and P. Nascente, "Treatment of polycarbonate by dielectric barrier discharge (DBD) at atmospheric pressure," in Journal of Physics: Conference Series, 2014, vol. 511, no. 1: IOP Publishing, p. 012075.
[16] E. Feizollahi, N. Misra, and M. Roopesh, "Factors influencing the antimicrobial efficacy of Dielectric Barrier Discharge (DBD) Atmospheric Cold Plasma (ACP) in food processing applications," Critical reviews in food science and nutrition, vol. 61, no. 4, pp. 666-689, 2021.
[17] A. H. Khoja, M. Tahir, and N. A. S. Amin, "Recent developments in non-thermal catalytic DBD plasma reactor for dry reforming of methane," Energy conversion and management, vol. 183, pp. 529-560, 2019.
[18] G. Yu et al., "Effect of rotating a dielectric barrier on discharge energy and uniformity in an atmospheric pressure air DBD," Journal of Physics D: Applied Physics, vol. 56, no. 47, p. 475206, 2023.
[19] R. A. Bernal-Orozco, I. Carvajal-Mariscal, and O. M. Huerta-Chavez, "Flow and performance effects of a phenomenological model for a DBD actuator under different operating parameters," Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 45, no. 10, p. 513, 2023.
[20] Y. Hayakawa, P. Emeraldi, T. Imai, and S. Kambara, "CO2 conversion characteristics by micro-gap DBD plasma reactor," Int. J. Plasma Environ. Sci. Technol, vol. 17, no. e01007, p. 12pp, 2023.
[21] A. Barjasteh, E. Eslami, and N. Morshedian, "Experimental investigation and numerical modeling of the effect of voltage parameters on the characteristics of low-pressure argon dielectric barrier discharges," Physics of Plasmas, vol. 22, no. 7, p. 073508, 2015.