[1] U. Aeberhard, Theory and simulation of quantum photovoltaic devices based on the non-equilibrium Green’s function formalism, J Comput Electron. 10. 2011, 394–413.
[2] A. Fert, Nobel Lecture: Origin, development, and future of spintronics, Rev. Mod. Phys. 80. 2008, 1517.
[3] I. Žutić, J. Fabian, S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76. 2004, 323.
[4] E. W. Hill, A.K. Geim, K. Novoselov, F. Schedin, P. Blake, Graphene Spin Valve Devices. IEEE Trans. Magn. 42. 2006, 2694.
[5] C. Jozsa, M. Popinciuc, N. Tombros, H. T. Jonkman, B. J. van Wees, Electronic Spin Drift in Graphene Field-Effect Transistors, Phys. Rev. Lett. 100. 2008, 236603.
[6] N. M. R. Peres, F. Guinea, A. H. Castro Neto, Coulomb interactions and ferromagnetism in pure and doped graphene. Phys. Rev. B. 72. 2005, 174406
[7] T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, A. I. Lichtenstein, Molecular Doping of Graphene. Nano Lett. 173. 2008, 8
[8] Behnia, Kamran. Polarized light boosts valleytronics, Nature Nanotechnology. 7,. 2012, 488-489.
[9] T.-N. Do, P.-H. Shih, G. Gumbs, D. Huang, C.-W. Chiu, M.-F. Lin, Diverse magnetic quantization in bilayer silicene, Phys. Rev. B. 97. 2018, 125416.
[10] T.-N. Do, G. Gumbs, P.-H. Shih, D. Huang, C.-W. Chiu, C.-Y. Chen, M.-F. Lin, Peculiar optical properties of bilayer silicene under the influence of external electric and magnetic fields, Sci. Rep. 9. 2019, 624.
[11] N. Kheirabadi, A. Shafiekhani, M. Fathipour, Review on graphene spintronic, new land for discovery, Superlattices Microstruct. 74. 2014, 123–145.
[12] A. Kara, C. Léandri, M.E. Dávila, P. De Padova, B. Ealet, H. Oughaddou, B. Aufray, G. Le Lay, Physics of silicene stripes, J. Supercond. Nov. Magn. 22. 2009, 259–263.
[13] T. Saari, "Electronic structure and spin polarization in Silicene nanostructures",. master’s thesis, Finland, Technical University of Tampere, 2013,, 69.
[14] A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81. 2009, 109.
[15] E. I. Rashba, "Graphene with structure-induced spin-orbit coupling: Spin-polarized states, spin zero modes, and quantum Hall effect." Physical Review B, vol. 79. 2009, 161409.
[16] Petra Dietl, "Numerical Studies of Electronic Transport through Graphene Nanoribbons with Disorder"; thesis, Germany, Institute of Theoretical Solid State Physics, University of Karlsruhe, 2009,, 76.
[17] F. Rahimi, A. Phirouznia. Electric feld induced pure spin‑photo current in zigzag stanene and germanene nanoribbons. Scientific Report 12. 2022,.
[18] Jingtian Fang, William G. Vandenberghe, and Massimo V. Fischetti. Microscopic dielectric permittivities of graphene nanoribbons and graphene. Phys. Rev. B. 94. 2016, 045318.
[19] L.E. Henrickson, Nonequilibrium photocurrent modeling in resonant tunneling photodetectors. J. Appl. Phys. 91. 2002, 6273–6281.
[20] Lei Zhang, Kui Gong, Jingzhe Chen, Lei Liu, Yu Zhu, Di Xiao, and Hong Guo. Physical Review B 90. 2014, 195428.
[21] H. Haug and A.-P. Jauho, "Quantum Kinetics in Transport and Optics of Semiconductors". Springer-Verlag, New York,. 1998,.
[22] S. Datta "Electronic Transport in Mesoscopic Systems". Cambridge University Press, UK.. 1997,.
[23] H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors. Springer-Verlag, New York.. 1998,.
[24] Mahdi Pourfath. "The Non-Euilibrium Green's Function Methode for Nanoscale Device Simulation". Springer Wien Heidelberg New York Dordrecht London,. 2014,.
[25] T. Farajollahpour, S. Khamouei, S.S. Shateri, A. Phirouznia. Anisotropic Friedel oscillations in graphene-like materials: The Dirac point approximation in wave-number dependent quantities revisited. Scientific Reports 8. 2018, 2667.
[26] Yan-Hong Zhou , Shaohui Yu , Yuejun Li , Xin Luo , Xiaohong Zheng, Lei Zhang. Pure spin current generation with photogalvanic effect in graphene interconnect junctions.
Nanophotonics 10, 6. 2021,.
[27] Yuejun Li, Xiaofei Shang, Yan-Hong Zhou, Xiaohong Zheng. Realizing pure spin current by the photogalvanic effect in armchair graphene nanoribbons with nano-constriction engineering. Phys. Chem. Chem. Phys., 25 2023. 2023, 2890-2896.
[28] L. Zhang, J. Chen, L. Zhang, F. Xu, L. Xiao, S. Jia, Gate controllable optical spin current generation in zigzag graphene nanoribbon, Carbon 173. 2021, 565-571.