[1] Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature materials, 2007. 6(3): p. 183-191.
[2] Bhimanapati, G.R., et al., Recent advances in two-dimensional materials beyond graphene. ACS nano, 2015. 9(12): p. 11509-11539.
[3] Molle, A. and C. Grazianetti, Xenes: 2D Synthetic Materials Beyond Graphene. 2022: Elsevier.
[4] Abdollah, H.M., et al., Investigation into thermoelectric properties of M (M= Hf, Zr) X2 (X= S, Se, Te) nanotubes using first-principles calculation. Solid State Communications, 2021. 336: p. 114289.
[5] Weeks, M.E., The discovery of the elements. XXI. Supplementary note on the discovery of phosphorus. Journal of Chemical Education, 1933. 10(5): p. 302.
[6] Greenwood, N.N. and A. Earnshaw, Chemistry of the Elements. 2012: Elsevier.
[7] Baba, M., et al., Electrical properties of black phosphorus single crystals prepared by the bismuth-flux method. Japanese journal of applied physics, 1991. 30(8R): p. 1753.
[8] Bridgman, P., Two new modifications of phosphorus. Journal of the American chemical society, 1914. 36(7): p. 1344-1363.
[9] Cai, Y., G. Zhang, and Y.-W. Zhang, Phosphorene: Physical Properties, Synthesis, and Fabrication. 2019: CRC Press.
[10] Liu, H., et al., The effect of dielectric capping on few-layer phosphorene transistors: Tuning the Schottky barrier heights. IEEE Electron Device Letters, 2014. 35(7): p. 795-797.
[11] Jain, A. and A.J. McGaughey, Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Scientific reports, 2015. 5(1): p. 8501.
[12] Zhu, L., G. Zhang, and B. Li, Coexistence of size-dependent and size-independent thermal conductivities in phosphorene. Physical Review B, 2014. 90(21): p. 214302.
[13] Ong, Z.-Y., et al., Strong thermal transport anisotropy and strain modulation in single-layer phosphorene. The Journal of Physical Chemistry C, 2014. 118(43): p. 25272-25277.
[14] Akhtar, M., et al., Recent advances in synthesis, properties, and applications of phosphorene. npj 2D Materials and Applications, 2017. 1(1): p. 5.
[15] Chaudhary, V., et al., Phosphorene-an emerging two-dimensional material: recent advances in synthesis, functionalization, and applications. 2D Materials, 2022.
[16] Batmunkh, M., M. Bat‐Erdene, and J.G. Shapter, Phosphorene and phosphorene‐based materials–prospects for future applications. Advanced Materials, 2016. 28(39): p. 8586-8617.
[17] Eswaraiah, V., et al., Black phosphorus nanosheets: synthesis, characterization and applications. Small, 2016. 12(26): p. 3480-3502.
[18] Guo, Y., et al., Atomic structures and electronic properties of phosphorene grain boundaries. 2D Materials, 2016. 3(2): p. 025008.
[19] Tareen, A.K., et al., Recent development in emerging phosphorene based novel materials: Progress, challenges, prospects and their fascinating sensing applications. Progress in Solid State Chemistry, 2022. 65: p. 100336.
[20] Xu, W. and G. Zhang, Remarkable reduction of thermal conductivity in phosphorene phononic crystal. Journal of Physics: Condensed Matter, 2016. 28(17): p. 175401.
[21] Liu, X., et al., Remarkable role of grain boundaries in the thermal transport properties of phosphorene. ACS omega, 2020. 5(28): p. 17416-17422.
[22] Liu, T.-H. and C.-C. Chang, Anisotropic thermal transport in phosphorene: effects of crystal orientation. Nanoscale, 2015. 7(24): p. 10648-10654.
[23] Qin, G. and M. Hu, Thermal transport in phosphorene. Small, 2018. 14(12): p. 1702465.
[24] Hong, Y., J. Zhang, and X.C. Zeng, Thermal transport in phosphorene and phosphorene-based materials: A review on numerical studies. Chinese Physics B, 2018. 27(3): p. 036501.
[25] Ladd, A.J., B. Moran, and W.G. Hoover, Lattice thermal conductivity: A comparison of molecular dynamics and anharmonic lattice dynamics. Physical Review B, 1986. 34(8): p. 5058.
[26] McGaughey, A.J. and M. Kaviany, Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation. Physical Review B, 2004. 69(9): p. 094303.
[27] McGaughey, A.J. and M. Kaviany, Phonon transport in molecular dynamics simulations: formulation and thermal conductivity prediction. Advances in heat transfer, 2006. 39: p. 169-255.
[28] Thomas, J.A., et al., Predicting phonon dispersion relations and lifetimes from the spectral energy density. Physical Review B, 2010. 81(8): p. 081411.
[29] Larkin, J., et al., Comparison and evaluation of spectral energy methods for predicting phonon properties. Journal of Computational and Theoretical Nanoscience, 2014. 11(1): p. 249-256.
[30] Turney, J.E., et al. Predicting phonon properties from molecular dynamics simulations using the spectral energy density. in ASME/JSME Thermal Engineering Joint Conference. 2011.
[31] Feng, T. and X. Ruan, Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids. Physical Review B, 2016. 93(4): p. 045202.
[32] Feng, T. and X. Ruan, Prediction of spectral phonon mean free path and thermal conductivity with applications to thermoelectrics and thermal management: a review. Journal of Nanomaterials, 2014. 2014.
[33] Anees, P., M. Valsakumar, and B. Panigrahi, Temperature dependent phonon frequency shift and structural stability of free-standing graphene: a spectral energy density analysis. 2D Materials, 2015. 2(3): p. 035014.
[34] Feng, T., B. Qiu, and X. Ruan, Anharmonicity and necessity of phonon eigenvectors in the phonon normal mode analysis. Journal of Applied Physics, 2015. 117(19): p. 195102.
[35] Qiu, B. and X. Ruan, Reduction of spectral phonon relaxation times from suspended to supported graphene. Applied Physics Letters, 2012. 100(19): p. 193101.
[36] Jiang, J.-W., H.S. Park, and T. Rabczuk, Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity. Journal of Applied Physics, 2013. 114(6): p. 064307.
[37] Nosé, S., A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical physics, 1984. 81(1): p. 511-519.
[38] Plimpton, S., Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics, 1995. 117(1): p. 1-19.
[39] Jiang, J.-W., Thermal conduction in single-layer black phosphorus: highly anisotropic? Nanotechnology, 2015. 26(5): p. 055701.
[40] Fei, R., et al., Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano letters, 2014. 14(11): p. 6393-6399.
[41] Slack, G.A., Thermal conductivity of elements with complex lattices: B, P, S. Physical Review, 1965. 139(2A): p. A507.
[42] Giannozzi, P., et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 2009. 21(39): p. 395502.
[43] Goldsmid, H.J., Introduction to thermoelectricity. Vol. 121. 2010: Springer.
[44] Togo, A. and I. Tanaka, First principles phonon calculations in materials science. Scripta Materialia, 2015. 108: p. 1-5.
[45] Naghdiani, N. and A.A.S. Dodaran, Lattice thermal conductivity calculation of phosphorene using molecular dynamics and spectral energy density. Solid State Communications, 2023: p. 115263.
[46] Mafakheri, M. and A.A.S. Dodaran, Graphene phonons lifetime and mean free path using ab initio molecular dynamics and spectral energy density analysis. Physica Scripta, 2021. 96(6): p. 065702.
[47] Yousefi, F., M. Shavikloo, and M. Mohammadi, Non-equilibrium molecular dynamics study on radial thermal conductivity and thermal rectification of graphene. Molecular Simulation, 2019. 45(8): p. 646-651.
[48] Qin, G., et al., Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Physical Chemistry Chemical Physics, 2015. 17(7): p. 4854-4858.
[48] Lindsay, L., D. Broido, and N. Mingo, Flexural phonons and thermal transport in graphene. Physical Review B, 2010. 82(11): p. 115427.
[50] Madsen, G.K. and D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Computer Physics Communications, 2006. 175(1): p. 67-71.