[1] D. Luong, C. W. Sandbo Chang, A. M. Vadiraj, A. Damini, C. M. Wilson, and B. Balaji, "Receiver operating characteristics for a prototype quantum two-mode squeezing radar," accepted for publication in IEEE, 2019.
[2] Sandbo Chang, C. W..; Vadiraj, A.M.; Bourassa, J.; Balaji, B.; Wilson, C.M. "Quantum-enhanced noise radar". Appl. Phys. Lett. 114 (11): 112601. 2018.
[3] Luong, L; Balaji, B.; Sandbo Chang, C.W.; Ananthapadmanabha Rao, V.M.; Wilson, C. "Microwave quantum radar: an experimental validation". 2018 International Carnahan Conference on Security Technology (ICCST), Montreal, QC: 1–5. 2018.
[4] Shapiro, Jeffrey, "The Quantum illumination story". IEEE Aerospace and Electronic Systems Magazine. 35 (4): 8–20, 2020.
[5] David Luong, Sreeraman Rajan, and Bhashyam Balaji, "Quantum monopulse radar", IEEE Xplore,2020.
[6] David Luong, Sreeraman Rajan, and Bhashyam Balaji, "Entanglement-based quantum radar: From myth to reality". IEEE A&E Systems Magazine. 2020.
[7] Han Liu, Amr Helmy, and Bhashyam Balaji, "Inspiring radar from quantum-enhanced lidar". IEEE A&E SYSTEMS MAGAZINE. 2020.
[8] David Luong, Sreeraman Rajan, and Bhashyam Balaji, "Are quantum radar arrays possible?". Crown. 2019.
[9] David Luong, Bhashyam Balaji, "Quantum radar, “quantum networks, not-so quantum hackers", Proc. SPIE 11018, Signal Processing, Sensor/Information Fusion, and Target Recognition XXVIII, 110181E (7 May 2019).
[10] Marco, Frasco and Alfonso Farina, "Multiple input and multiple output quantum radar", IEEE Radar Conference (RadarConf20). 2020.
[12] Fred Daum, Raytheon, "Quantum Radar Cost and Practical Issues", IEEE A&E Systems Magazine. 2020.
[14] Torromé, Ricardo Gallego, Nadya Ben Bekhti-Winkel, and Peter Knott. "Introduction to quantum radar", arXiv preprint arXiv:2006.14238 (2020).
[15] Barzanjeh, Shabir; Guha, Saikat; Weedbrook, Christian; Vitali, David; Shapiro, Jeffrey H.; Pirandola, Stefano. "Microwave quantum illumination", Physical Review Letters.114(8):080503.(2015-02-27).
[16] Barzanjeh, Shabir; Pirandola, Stefano; Vitali, David; Fink, Johannes M. "Microwave quantum illumination using a digital receiver", Science Advances. 6 (19): eabb0451. 2020.
[17] Maccone, Lorenzo, and Changliang Ren. "Quantum radar." Physical Review Letters 124.20 (2020): 200503.
[18] Pirandola, S; Bardhan, B. R.; Gehring, T.; Weedbrook, C.; Lloyd, S. "Advances in photonic quantum sensing". Nature Photonics. 12 (12): 724–733. 2018.
[19] Tan, Si-Hui; Erkmen, Baris I.; Giovannetti, Vittorio; Guha, Saikat; Lloyd, Seth; Maccone, Lorenzo; Pirandola, Stefano; Shapiro, Jeffrey H. "Quantum illumination with gaussian states". Physical Review Letters. 101 (25): 253601. 2008.
[20] H. Liu, B. Balaji and A. S. Helmy, "Target detection aided by quantum temporal correlations: theoretical analysis and experimental validation" in IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 5,. 3529-3544, 2020.
[21] Zhuang, Quntao, and Jeffrey H. Shapiro. "Ultimate accuracy limit of quantum pulse-compression ranging." Physical Review Letters 128.1: 010501. 2022.
[22] Lanzagorta, Marco. "Quantum radar." Synthesis Lectures on Quantum Computing 3.1 (2011): 1-139.
[23] Salmanogli, Ahmad, and Dincer Gokcen. "Entanglement sustainability improvement using optoelectronic converter in quantum radar (interferometric object-sensing)." IEEE Sensors Journal 21, no. 7 (2021): 9054-9062.
[24] Cai, Qizhi, Jinkun Liao, and Qiang Zhou. "Stationary entanglement between light and microwave via ferromagnetic magnons." Annalen der Physik 532, no. 12 (2020): 2000250.
[25] Grebel, J., et al. "Flux pumped impedance-engineered broadband Josephson parametric amplifier." Applied Physics Letters 118.14 (2021): 142601.
[26] Scully, M., & Zubairy, M. Quantum Optics. Cambridge: Cambridge University Press (1997). doi:10.1017/CBO978051-1813993.
[27] Nielsen, M. A., & Chuang, I. L. Quantum information and quantum computation.10th Anniversary Edition. Cambridge: Cambridge University Press. 2010.
[28] Zubairy, M. Suhail. "Quantum state measurement via Autler-Townes spectroscopy". Physics Letters A, Vol. 222, Issue. 1-2, p. 91. 1996.
[29] Nakahara, Mikio & Ohmi, Tetsuo. "Quantum computing rrom linear algebra to physical realizations". 10.1201/ 9781420012293. 2008.
[30] Barnett, Stephen, and Paul M. Radmore. Methods in theoretical quantum optics. Vol. 15. Oxford University Press, 2002.
[31] Luong, David, and Bhashyam Balaji. "Quantum two‐mode squeezing radar and noise radar: covariance matrices for signal processing." IET Radar, Sonar & Navigation 14.1 (2020): 97-104.
[32] Luong, David, Sreeraman Rajan, and Bhashyam Balaji. "Quantum two-mode squeezing radar and noise radar: Correlation coefficients for target detection." IEEE Sensors Journal 20.10 (2020): 5221-5228.
[33] Cai, Qizhi, et al. "Microwave quantum illumination via cavity magnonics." Physical Review A 103.5 (2021): 052419.
[34] Barzanjeh, Sh, Mehdi Abdi, Gerard J. Milburn, Paolo Tombesi, and David Vitali. "Reversible optical-to-microwave quantum interface." Physical Review Letters 109, no. 13 (2012): 130503.
[35] Barzanjeh, Shabir, E. S. Redchenko, Matilda Peruzzo, Matthias Wulf, D. P. Lewis, G. Arnold, and Johannes M. Fink. "Stationary entangled radiation from micromechanical motion", Nature 570, no. 7762 (2019): 480-483.
[36] Hosseiny, Seyed Mohammad, Milad Norouzi, Jamileh Seyed-Yazdi, and Mohammad Hossein Ghamat. "Engineered Josephson Parametric Amplifier in quantum two-modes squeezed radar." arXiv preprint arXiv:2205.06344 (2022).
[37] H. A. Boura, and A. Isar, Logarithmic negativity of two bosonic modes in the two thermal reservoir model. Rom. J. Phys. 60, 1278 (2015).
[38] A. Salmanogli, D. Gokcen, and H. S. Gecim, Entanglement of optical and microcavity modes by means of an optoelectronic system. Phys. Rev. Appl. 11, (2019)