نوع مقاله : پژوهشی

نویسندگان

1 گروه فیزیک، دانشکده علوم پایه، دانشگاه جهرم، جهرم

2 گروه فیزیک‌، دانشکده علوم، دانشگاه نیشابور، نیشابور، ایران

چکیده

مرکز نیتروژن-جای خالی یک نقص نقطه ای در الماس است که متشکل از یک جفت همسایه از اتم نیتروژن (که جایگزین یکی از اتم های کربن شده است) و یک جای خالی شبکه می‌باشد. این سامانه یکی از کاندیداهای اصلی جهت تحقق عملی پردازش های کوانتومی است. در این مقاله کاربرد چنین سامانه ای در فرآیند برآورد کوانتومی مورد بررسی قرار خواهد گرفت. مخصوصا برآورد فاز اولیه که می تواند اطلاعات مهمی را در خود کد کرده باشد دقیقا بررسی خواهد شد. به علاوه، تاثیر درهمتنیدگی سامانه با محیط و هم چنین وفاداری حالت تحول یافته نسبت به حالت اولیه را بر دقت برآورد فاز مطالعه خواهیم نمود.

کلیدواژه‌ها

[1] Haroche S, Raimond J-M. Cavity quantum electrodynamics. Sci Am 1993; 268: 54–62.
[2] Kjaergaard M, Schwartz ME, Braumüller J, Krantz P, Wang JI-J, Gustavsson S, et al. Superconducting qubits: Current state of play. Annual Review of Condensed Matter Physics 2020;11:369–95.
[3] Fan L, Zou C-L, Cheng R, Guo X, Han X, Gong Z, et al. Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits. Sci Adv 2018;4:eaar4994.
[4] Cubaynes T, Contamin LC, Dartiailh MC, Desjardins MM, Cottet A, Delbecq MR, et al. Nanoassembly technique of carbon nanotubes for hybrid circuit-QED. Applied Physics Letters 2020;117:114001.
[5] Macêdo R, Holland RC, Baity PG, McLellan LJ, Livesey KL, Stamps RL, et al. Electromagnetic approach to cavity spintronics. Physical Review Applied 2021;15:24065.
[6] Wang K, Dahan R, Shentcis M, Kauffmann Y, ben Hayun A, Reinhardt O, et al. Coherent interaction between free electrons and a photonic cavity. Nature 2020;582:50–4.
[7] Zhang Y, Wu Q, Su S-L, Lou Q, Shan C, Mølmer K. Cavity Quantum Electrodynamics Effects with Nitrogen Vacancy Center Spins Coupled to Room Temperature Microwave Resonators. Physical Review Letters 2022;128:253601.
[8] Yang W, Conkey DB, Wu BIN, Yin D, Hawkins AR, Schmidt H. Atomic spectroscopy on a chip. Nature Photonics 2007;1:331–5.
[9] Hao YM, Lin GW, Lin XM, Niu YP, Gong SQ. Single-photon transistor based on cavity electromagnetically induced transparency with Rydberg atomic ensemble. Sci Rep 2019;9:1–7.
[10] White AD, Trivedi R, Narayanan K, Vučković J. Enhancing Superradiance in Spectrally Inhomogeneous Cavity QED Systems with Dynamic Modulation. ACS Photonics 2022;9:2467–72.
[11] Russell KJ, Liu T-L, Cui S, Hu EL. Large spontaneous emission enhancement in plasmonic nanocavities. Nature Photonics 2012;6:459–62.
[12] Der Sar T, Wang ZH, Blok MS, Bernien H, Taminiau TH, Toyli DM, et al. Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature 2012;484:82–6.
[13] Pan X-Y, Liu G-Q, Yang L-L, Fan H. Solid-state optimal phase-covariant quantum cloning machine. Applied Physics Letters 2011;99:51113.
[14] Wu Y, Wang Y, Qin X, Rong X, Du J. A programmable two-qubit solid-state quantum processor under ambient conditions. Npj Quantum Information 2019;5:1–5.
[15] Zhang J, Hegde SS, Suter D. Efficient implementation of a quantum algorithm in a single nitrogen-vacancy center of diamond. Physical Review Letters 2020; 125: 30501.
[16] Gaebel T, Domhan M, Popa I, Wittmann C, Neumann P, Jelezko F, et al. Room-temperature coherent coupling of single spins in diamond. Nature Physics 2006; 2:408–13.
[17] Fuchs GD, Dobrovitski Vv, Toyli DM, Heremans FJ, Awschalom DD. Gigahertz dynamics of a strongly driven single quantum spin. Science (1979) 2009;326:1520–2.
[18] Shim JH, Niemeyer I, Zhang J, Suter D. Room-temperature high-speed nuclear-spin quantum memory in diamond. Physical Review A 2013; 87: 12301.
[19] Irber DM, Poggiali F, Kong F, Kieschnick M, Lühmann T, Kwiatkowski D, et al. Robust all-optical single-shot readout of nitrogen-vacancy centers in diamond. Nat Commun 2021;12:1–6.
[20] Kosaka H, Niikura N. Entangled absorption of a single photon with a single spin in diamond. Phys Rev Lett 2015; 114: 53603.
[21] Hensen B, Bernien H, Dréau AE, Reiserer A, Kalb N, Blok MS, et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 2015;526:682–6.
[22] Pfaff W, Hensen BJ, Bernien H, van Dam SB, Blok MS, Taminiau TH, et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science (1979) 2014;345:532–5.
[23] Fu Y, Liu W, Ye X, Wang Y, Zhang C, Duan C-K, et al. Experimental investigation of quantum correlations in a two-qutrit spin system. ArXiv Preprint ArXiv:220805618 2022.
[24] Helstrom CW. Quantum detection and estimation theory. Journal of Statistical Physics 1969;1:231–52.
[25] Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology. Nat Photonics 2011;5:222–9.
[26] Giovannetti V, Lloyd S, Maccone L. Quantum metrology. Phys Rev Lett 2006;96:10401.
[27] Liu J, Zhang M, Chen H, Wang L, Yuan H. Optimal scheme for quantum metrology. Advanced Quantum Technologies 2022;5:2100080.
[28] Yang J, Pang S, Chen Z, Jordan AN, del Campo A. Variational principle for optimal quantum controls in quantum metrology. Physical Review Letters 2022; 128: 160505.
[29] Barbieri M. Optical Quantum Metrology. PRX Quantum 2022;3:10202.
[30] Albarelli F, Demkowicz-Dobrzański R. Probe incompatibility in multiparameter noisy quantum metrology. Physical Review X 2022;12:11039.
[31] Jahromi HR, Franco R lo. Hilbert–Schmidt speed as an efficient figure of merit for quantum estimation of phase encoded into the initial state of open n-qubit systems. Scientific Reports 2021;11.
[32] Zhang Z, Zhuang Q. Distributed quantum sensing. Quantum Science and Technology 2021;6:43001.
[33] Degen CL, Reinhard F, Cappellaro P. Quantum sensing. Rev Mod Phys 2017; 89: 35002.
 [34] Rembold P, Oshnik N, Müller MM, Montangero S, Calarco T, Neu E. Introduction to quantum optimal control for quantum sensing with nitrogen-vacancy centers in diamond. AVS Quantum Science 2020;2:24701.
[35] Soshenko V v, Bolshedvorskii S v, Rubinas O, Sorokin VN, Smolyaninov AN, Vorobyov V v, et al. Nuclear spin gyroscope based on the nitrogen vacancy center in diamond. Physical Review Letters 2021;126:197702.
[36] Rangani Jahromi H. Parameter estimation in plasmonic QED. Optics Communications 2018;411:119–25.
 [37] Paris MGA. Quantum estimation for quantum technology. International Journal of Quantum Information 2009;7:125–37.
 [38] Haine SA. Mean-field dynamics and Fisher information in matter wave interferometry. Physical Review Letters 2016;116:230404.
 [39] Zhong W, Sun Z, Ma J, Wang X, Nori F. Fisher information under decoherence in Bloch representation. Physical Review A - Atomic, Molecular, and Optical Physics 2013;87. https://doi.org/10.1103/Phys-RevA.87.022337.
 [40] Jiang Z. Quantum Fisher information for states in exponential form. Physical Review A 2014;89:32128.
[41] Liu J, Yuan H, Lu X-M, Wang X. Quantum Fisher information matrix and multiparameter estimation. Journal of Physics A: Mathematical and Theoretical 2019; 53: 23001.
[42] Wootters WK. Entanglement of formation of an arbitrary state of two qubits. Physical Review Letters 1998;80:2245.
[43] Popescu S, Rohrlich D. On the measure of entanglement for pure states. Citeseer; 1997.
[44] Bennett CH, Bernstein HJ, Popescu S, Schumacher B. Concentrating partial entanglement by local operations. Physical Review A - Atomic, Molecular, and Optical Physics 1996;53. https://doi.org/10.-1103/PhysRevA.53.2046.
[45] Nielsen MA, Chuang I. Quantum computation and quantum information 2002.
[46] Jozsa R. Fidelity for mixed quantum states. J Mod Opt 1994;41:2315–23.
[47] Gonzalez-Tudela A, Martin-Cano D, Moreno E, Martin-Moreno L, Tejedor C, Garcia-Vidal FJ. Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys Rev Lett 2011;106:20501.
[48] Yang W, An J-H, Zhang C, Chen C, Oh CH. Dynamics of quantum correlation between separated nitrogen-vacancy centers embedded in plasmonic waveguide. Sci Rep 2015;5:1–9.
[49] Liu J, Yuan H, Lu XM, Wang X. Quantum Fisher information matrix and multiparameter estimation. Journal of Physics A: Mathematical and Theoretical 2020;53. https://doi.org/10.1088/1751-8121/ab5d4d.
[50] Gudder S. Quantum markov chains. Journal of Mathematical Physics 2008;49:72105.
[51] de Vega I, Alonso D. Dynamics of non-Markovian open quantum systems. Reviews of Modern Physics 2017;89:15001.
[52] Chitambar E, Gour G. Quantum resource theories. Rev Mod Phys 2019;91:25001.