[1] Haroche S, Raimond J-M. Cavity quantum electrodynamics. Sci Am 1993; 268: 54–62.
[2] Kjaergaard M, Schwartz ME, Braumüller J, Krantz P, Wang JI-J, Gustavsson S, et al. Superconducting qubits: Current state of play. Annual Review of Condensed Matter Physics 2020;11:369–95.
[3] Fan L, Zou C-L, Cheng R, Guo X, Han X, Gong Z, et al. Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits. Sci Adv 2018;4:eaar4994.
[4] Cubaynes T, Contamin LC, Dartiailh MC, Desjardins MM, Cottet A, Delbecq MR, et al. Nanoassembly technique of carbon nanotubes for hybrid circuit-QED. Applied Physics Letters 2020;117:114001.
[5] Macêdo R, Holland RC, Baity PG, McLellan LJ, Livesey KL, Stamps RL, et al. Electromagnetic approach to cavity spintronics. Physical Review Applied 2021;15:24065.
[6] Wang K, Dahan R, Shentcis M, Kauffmann Y, ben Hayun A, Reinhardt O, et al. Coherent interaction between free electrons and a photonic cavity. Nature 2020;582:50–4.
[7] Zhang Y, Wu Q, Su S-L, Lou Q, Shan C, Mølmer K. Cavity Quantum Electrodynamics Effects with Nitrogen Vacancy Center Spins Coupled to Room Temperature Microwave Resonators. Physical Review Letters 2022;128:253601.
[8] Yang W, Conkey DB, Wu BIN, Yin D, Hawkins AR, Schmidt H. Atomic spectroscopy on a chip. Nature Photonics 2007;1:331–5.
[9] Hao YM, Lin GW, Lin XM, Niu YP, Gong SQ. Single-photon transistor based on cavity electromagnetically induced transparency with Rydberg atomic ensemble. Sci Rep 2019;9:1–7.
[10] White AD, Trivedi R, Narayanan K, Vučković J. Enhancing Superradiance in Spectrally Inhomogeneous Cavity QED Systems with Dynamic Modulation. ACS Photonics 2022;9:2467–72.
[11] Russell KJ, Liu T-L, Cui S, Hu EL. Large spontaneous emission enhancement in plasmonic nanocavities. Nature Photonics 2012;6:459–62.
[12] Der Sar T, Wang ZH, Blok MS, Bernien H, Taminiau TH, Toyli DM, et al. Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature 2012;484:82–6.
[13] Pan X-Y, Liu G-Q, Yang L-L, Fan H. Solid-state optimal phase-covariant quantum cloning machine. Applied Physics Letters 2011;99:51113.
[14] Wu Y, Wang Y, Qin X, Rong X, Du J. A programmable two-qubit solid-state quantum processor under ambient conditions. Npj Quantum Information 2019;5:1–5.
[15] Zhang J, Hegde SS, Suter D. Efficient implementation of a quantum algorithm in a single nitrogen-vacancy center of diamond. Physical Review Letters 2020; 125: 30501.
[16] Gaebel T, Domhan M, Popa I, Wittmann C, Neumann P, Jelezko F, et al. Room-temperature coherent coupling of single spins in diamond. Nature Physics 2006; 2:408–13.
[17] Fuchs GD, Dobrovitski Vv, Toyli DM, Heremans FJ, Awschalom DD. Gigahertz dynamics of a strongly driven single quantum spin. Science (1979) 2009;326:1520–2.
[18] Shim JH, Niemeyer I, Zhang J, Suter D. Room-temperature high-speed nuclear-spin quantum memory in diamond. Physical Review A 2013; 87: 12301.
[19] Irber DM, Poggiali F, Kong F, Kieschnick M, Lühmann T, Kwiatkowski D, et al. Robust all-optical single-shot readout of nitrogen-vacancy centers in diamond. Nat Commun 2021;12:1–6.
[20] Kosaka H, Niikura N. Entangled absorption of a single photon with a single spin in diamond. Phys Rev Lett 2015; 114: 53603.
[21] Hensen B, Bernien H, Dréau AE, Reiserer A, Kalb N, Blok MS, et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 2015;526:682–6.
[22] Pfaff W, Hensen BJ, Bernien H, van Dam SB, Blok MS, Taminiau TH, et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science (1979) 2014;345:532–5.
[23] Fu Y, Liu W, Ye X, Wang Y, Zhang C, Duan C-K, et al. Experimental investigation of quantum correlations in a two-qutrit spin system. ArXiv Preprint ArXiv:220805618 2022.
[24] Helstrom CW. Quantum detection and estimation theory. Journal of Statistical Physics 1969;1:231–52.
[25] Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology. Nat Photonics 2011;5:222–9.
[26] Giovannetti V, Lloyd S, Maccone L. Quantum metrology. Phys Rev Lett 2006;96:10401.
[27] Liu J, Zhang M, Chen H, Wang L, Yuan H. Optimal scheme for quantum metrology. Advanced Quantum Technologies 2022;5:2100080.
[28] Yang J, Pang S, Chen Z, Jordan AN, del Campo A. Variational principle for optimal quantum controls in quantum metrology. Physical Review Letters 2022; 128: 160505.
[29] Barbieri M. Optical Quantum Metrology. PRX Quantum 2022;3:10202.
[30] Albarelli F, Demkowicz-Dobrzański R. Probe incompatibility in multiparameter noisy quantum metrology. Physical Review X 2022;12:11039.
[31] Jahromi HR, Franco R lo. Hilbert–Schmidt speed as an efficient figure of merit for quantum estimation of phase encoded into the initial state of open n-qubit systems. Scientific Reports 2021;11.
[32] Zhang Z, Zhuang Q. Distributed quantum sensing. Quantum Science and Technology 2021;6:43001.
[33] Degen CL, Reinhard F, Cappellaro P. Quantum sensing. Rev Mod Phys 2017; 89: 35002.
[34] Rembold P, Oshnik N, Müller MM, Montangero S, Calarco T, Neu E. Introduction to quantum optimal control for quantum sensing with nitrogen-vacancy centers in diamond. AVS Quantum Science 2020;2:24701.
[35] Soshenko V v, Bolshedvorskii S v, Rubinas O, Sorokin VN, Smolyaninov AN, Vorobyov V v, et al. Nuclear spin gyroscope based on the nitrogen vacancy center in diamond. Physical Review Letters 2021;126:197702.
[36] Rangani Jahromi H. Parameter estimation in plasmonic QED. Optics Communications 2018;411:119–25.
[37] Paris MGA. Quantum estimation for quantum technology. International Journal of Quantum Information 2009;7:125–37.
[38] Haine SA. Mean-field dynamics and Fisher information in matter wave interferometry. Physical Review Letters 2016;116:230404.
[39] Zhong W, Sun Z, Ma J, Wang X, Nori F. Fisher information under decoherence in Bloch representation. Physical Review A - Atomic, Molecular, and Optical Physics 2013;87. https://doi.org/10.1103/Phys-RevA.87.022337.
[40] Jiang Z. Quantum Fisher information for states in exponential form. Physical Review A 2014;89:32128.
[41] Liu J, Yuan H, Lu X-M, Wang X. Quantum Fisher information matrix and multiparameter estimation. Journal of Physics A: Mathematical and Theoretical 2019; 53: 23001.
[42] Wootters WK. Entanglement of formation of an arbitrary state of two qubits. Physical Review Letters 1998;80:2245.
[43] Popescu S, Rohrlich D. On the measure of entanglement for pure states. Citeseer; 1997.
[44] Bennett CH, Bernstein HJ, Popescu S, Schumacher B. Concentrating partial entanglement by local operations. Physical Review A - Atomic, Molecular, and Optical Physics 1996;53. https://doi.org/10.-1103/PhysRevA.53.2046.
[45] Nielsen MA, Chuang I. Quantum computation and quantum information 2002.
[46] Jozsa R. Fidelity for mixed quantum states. J Mod Opt 1994;41:2315–23.
[47] Gonzalez-Tudela A, Martin-Cano D, Moreno E, Martin-Moreno L, Tejedor C, Garcia-Vidal FJ. Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys Rev Lett 2011;106:20501.
[48] Yang W, An J-H, Zhang C, Chen C, Oh CH. Dynamics of quantum correlation between separated nitrogen-vacancy centers embedded in plasmonic waveguide. Sci Rep 2015;5:1–9.
[49] Liu J, Yuan H, Lu XM, Wang X. Quantum Fisher information matrix and multiparameter estimation. Journal of Physics A: Mathematical and Theoretical 2020;53. https://doi.org/10.1088/1751-8121/ab5d4d.
[50] Gudder S. Quantum markov chains. Journal of Mathematical Physics 2008;49:72105.
[51] de Vega I, Alonso D. Dynamics of non-Markovian open quantum systems. Reviews of Modern Physics 2017;89:15001.
[52] Chitambar E, Gour G. Quantum resource theories. Rev Mod Phys 2019;91:25001.