[1] Markov, N., Laser-Tissue Interaction, (translated by Dr Parviz Parvin), (2008), Amir Kabir University of Technology Press.
[2] Moradi, F., Sadeghi, M., Use of gold nanoparticles as radiation absorbers in photothermal therapy: Simulation of heat distribution. (2012). Mazandaran University Physics Conference.
[3] Shan GS., Liu XM., Che HJ., Yu JS., Chen XD., Yao Y., Qi LM., Chen ZJ. Investigation of laser heating effect of metallic nanoparticles on cancer treatment. IOP Conf Series: Materials Science and Engineering. 2016; 137: 012013.
[4] Hirsch LR., Stafford RJ., Bankson JA., Sershen SR., Rivera B., Price RE Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003; 100: 13549–54.
[5] Chun-Wen Hsiao, Er-Yuan Chuang, Hsin-Lung Chen, Dehui Wan, Chiranjeevi Korupalli, Zi-Xian Liao, Ya-Ling Chiu, Wei-Tso Chia, Kun-Ju Lin e., Hsing-Wen Sung Photothermal tumor ablation in mice with repeated therapy sessions using NIR-absorbing micellar hydrogels formed in situ. Biomaterials. 2015; 56: 26-35.
[6] Huang X., El-Sayed IH., Qian W., El-Sayed MA. Cancer cell imaging and photothermal therapy in the near infrared region by using gold nanorods. J Am Chem Soc. 2006; 128: 2115–20.
[7] Choi WI., Kim JY., Kang C., Byeon CC., Kim YH., Tae G. Tumor regression in vivo by photothermal therapy based on Gold-nanorod loaded functional nanocarriers. ACS Nano. 2011; 5: 1995–2003.
[8] Zhou F., Xing D., Ou Z., Wu B., Resasco DE., Chen WR. Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J Biomed Opt. 2009; 14: 021009.
[9] Kam NWS, O.’Connell M., Wisdom JA., Dai H. Carbon nanotubes as multifunctional biological transporters and near infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA. 2005; 102: 11600–5.
[10] Mobley J., Vo-Dinh T. Optical properties of tissues In: VoDinh T., editor Biomedical Photonics Handbook BocanRaton, FL: CRC Press. 2003; 2–38.
[11] Nathan CS., Paul J., Abraham MM., Sasirekha M. Efficacy of Low Level Laser Therapy over Conventional Therapy on Diabetic Peripheral Neuropathy: A Pilot Study Call for Editorial Board Members. 2019; 12 (3): 226.
[12] Moradpoor, H.; Safaei, M.; Rezaei, F.; Golshah, A.; Jamshidy, L.; Hatam, R.; Abdullah, R S. Optimisation of cobalt oxide nanoparticles synthesis as bactericidal agents. Open Access Maced J Med Sci. 2019, 7, 2757–2762.
[13] Rabani, I.; Yoo, J.; Kim, H S.; Lam, D.V.; Hussain, S.; Karuppasamy, K.; Seo, Y S. Highly dispersive Co3O4 nanoparticles incorporated into a cellulose nanofiber for a high-performance flexible supercapacitor. Nanoscale. 2021, 13, 355–370.
[14] Zhang, J.; Qian, B.; Sun, S.; Tao, S.; Chu, W.; Wu, D.; Song, L. Ultrafine Co3O4 nanoparticles within nitrogen-doped carbon matrix derived from metal-organic complex for boosting lithium storage and oxygen evolution reaction Small. 2019, 15, e1904260.
[15] Iqbal, J.; Numan, A.; Omaish Ansari, M.; Jafer, R.; Jagadish, P R.; Bashir, S.; Hasan, P M Z.; Bilgrami, A L.; Mohamad, S.; Ramesh, K.; et al Cobalt Oxide nanograins and silver nanoparticles decorated fibrous polyaniline nanocomposite as battery-type electrode for high performance supercapattery. Polymers. 2020, 12, 2816.
[16] Bhojane, P.; Sinha, L.; Devan, R S.; Shirage, P M. Mesoporous layered hexagonal platelets of Co3O4 nanoparticles with (111) facets for battery applications: High performance and ultra-high rate capability Nanoscale. 2018, 10, 1779–1787.
[17] Dalkıran, B.; Erden, P E.; Kılıç, E. Graphene and tricobalt tetraoxide nanoparticles based biosensor for electrochemical glutamate sensing. Artif Cells Nanomed Biotechnol. 2017, 45, 340–348.
[18] Abbasi, B A.; Iqbal, J.; Khan, Z.; Ahmad, R.; Uddin, S.; Shahbaz, A.; Zahra, S A.; Shaukat, M.; Kiran, F.; Kanwal, S.; et al Phytofabrication of cobalt oxide nanoparticles from Rhamnus virgata leaves extract and investigation of different bioactivities. Microsc Res Tech 2021, 84, 192–201.
[19] Huang, X.; Cai, H.; Zhou, H.; Li, T.; Jin, H.; Evans, C E.; Cai, J.; Pi, J. Cobalt oxide nanoparticle-synergized protein degradation and phototherapy for enhanced anticancer therapeutics. Acta Biomater. (2021), 121, 605–620.
[20] Huanshao Huang 1,†, Jiajun Wang 1,†, Junai Zhang 1, Jiye Cai 2, Jiang Pi 1,* and Jun-Fa Xu 1, Inspirations of Cobalt Oxide Nanoparticle Based Anticancer Therapeutics; Pharmaceutics. )2021), 13.