[1] J. B. Pendry, D. Schurig, and D. R. Smith, Controlling Electromagnetic Fields, Science, vol. 312, no. 5781, p. 178 (2006),doi:10.1126/science.112590.
[2] U. Leonhardt, Optical Conformal Mapping, Science, vol. 312, no. 5781, p. 177(2006), doi: 10.1126/science. 1126493.
[3] Y. Lai, H. Chen, Z.-Q. Zhang, and C. Chan, Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell, Phys. Rev. Lett. vol. 102, no. 9, (2009) 093901.
[4] J. Li and J. B. Pendry, Hiding under the carpet: a new strategy for cloaking, Phys. Rev. Lett., vol. 101, no. 20, (2008) 203901.
[5] A. Alù and N. Engheta, Achieving transparency with plasmonic and metamaterial coatings, Phys. Rev. E, vol. 72, no. 1, (2005) 016623,.
[6] A. Alu and N. Engheta, Plasmonic and metamaterial cloaking: physical mechanisms and potentials, J.of Optics A: Pure and Appl. Optics, vol. 10, no. 9, (2008) 093002,.
[7] A. Alù and N. Engheta, Effects of size and frequency dispersion in plasmonic cloaking, Phys. Rev. E, vol. 78, no. 4, (2008) 045602.
[8] B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials, Phys. Rev. Lett., vol. 103, no. 15, (2009) 15390.
[9] S. Joseph, Choi and J. C. Howell, Paraxial ray optics cloaking, Opt. Express 22, (2014) 29465-29478
[10] H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, Electromagnetic wave interactions with a metamaterial cloak, Phys. Rev. Lett., vol. 99, no. 6, (2007) 063903.
[11] K.-H. Kim, Y.-S. No, S. Chang, J.-H. Choi, and H.-G. Park, Invisible hyperbolic metamaterial nanotube at visible frequency, Sci. Rep., vol. 5, no. 1, (2015) 1-9.
[12] M. Naserpour and C. J. Zapata-Rodríguez, Tunable scattering cancellation of light using anisotropic cylindrical cavities, Plasmonics, vol. 12, no. 3, (2017) 675-683.
[13] C. Díaz-Aviñó, M. Naserpour, and C. J. Zapata-Rodríguez, "Correction to: Tunable Scattering Cancellation of Light Using Anisotropic Cylindrical Cavities," Plasmonics, vol. 13, no. 6, (2018) 242435-35.
[14] M. R. Forouzeshfard, M. Mohebbi, and A. Mollaei, Scattering cross section in a cylindrical anisotropic layered metamaterial, Opt. Commun., vol. 407, (2018) 193-198.
[15] R. Emadi, R. Safian, and A. Z. Nezhad, Plasmonic cloaking for irregular inclusions using an epsilon-near-zero region composed of a graphene–silica stack. JOSA B, 35(3), (2018) 643-651.
[16] C. Díaz-Aviñó, M. Naserpour, and C. J. Zapata-Rodríguez, Optimization of multilayered nanotubes for maximal scattering cancellation, Opt. express, vol. 24, no. 16, (2016)18184-18196,.
[17] A. Rezaei, F. Mohajeri, and Z. Hamzavi-Zarghani, Using plasmonic cloaking method on infinite cylindrical structures and its applications. J Comput Electron, 20(6), (2021) 2522-2529.
[18]J. D. Jackson. (1999) "Classical electrodynamics," ed: American Association of Physics Teachers.
[19] C. F. Bohren and D. R. Huffman. (2008). Absorption and scattering of light by small particles. John Wiley & Sons, (2008).
[20] T. Siefke et al. (2016). Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range, Adv. Optical Mat., vol. 4, no. 11, (2016) 1780-1786,.
[21] L. Falkovsky. (2008). Optical properties of graphene, in J. of Phys.: conference series, (2008), vol. 129, no. 1: IOP Publishing, p. 012004.
[22] P. Karimi Khuzani, A. Khavasi. (2017). Analytical Calculation of Dispersion Diagram of 1D Graphene-Based Periodic Structures, J. of appl. Electromag., vol. 3, no. 4, (2017) 39-46, (In Persian)