[1] C. Liang, Y. Wang, D. Li, X. Ji, F. Zhang, Z. He, Modeling and simulation of bulk heterojunction polymer solar cells, Sol. Energy Mater. Sol. Cells, 127 (2014) 67–86.
[2] T. Tromholt, M. Manceau, M. Helgesen, J. E. Carle, F. C. Krebs, Degradation of semiconducting polymers by concentrated sunlight, Sol. Energy Mater. Sol. Cells, 95 (2011) 1308-1320
[3] Y. Zhou, J. Pei, Q. Dong, X. Sun, Y. Liu, W. Tian, Donor- Acceptor Molecule as the Acceptor for Polymer-Based Bulk Heterojunction Solar Cells, J. Phys. Chem. C, 113 (2009) 7882- 78809
[4] A. Mahmoudloo , S. Ahmadi , Influence of the temperature on the charge transport and recombination profile in organic bulk heterojunction solar cells: a drift-diffusion study, J. Applide Physics A,119(4), (2015) 1523-1529.
[5] D. Rezzonico, B. Perucco, E. Knapp, R. Hausermann, N. A. Reinke, F. Muller, B. Ruhstaller, Numerical analysis of exciton dynamics in organic light-emitting devices and solar cells, J. of Photonics for Energy, 1 (2011) 011005-1.
[6] J. D. Kotlarski, L. J. A. Koster, P. W. M. Blom, M. Lenes, and L. H. Slooff, Combined optical and electrical modeling of polymer:fullerene bulk heterojunction solar cells, J. Appl. Phys. 103 (2008) 084502.
[7] A. H. Fallahpour, A. Gagliardi, F. Santoni, D. Gentilini, A. Zampetti, M. Auf der Maur, and A. Di Carlo Modeling and simulation of energetically disordered organic solar cells, J. Appl. Phys, 103(2014) 184502.
[8] R. Yahyazadeh, Z. Hashempour, Effect of Hyrostatic pressure on optical Absorption coeffivient of InGaN/GaN of Multiple Quantum well solar cells, Journal of optoelectronical Nano structures,6.2 (2021) 1-22
[9] L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, P. W. M. Blom, Device model for the operation of polymer/fullerene bulk heterojunction solar cells, Phys. Rev. B, 72 (2005) 085205.
[10] J. Nelson, J. J. Kwiatkowski, J. Kirkpatrick, and J. M. Frost, Modeling charge transport in organic photovoltaic materials, Acc. Chem. Res., 42 (2009) 1768.
[11] F. F. Stelzl, Uli Wurfel, Modeling the influence of doping on the performance of bulk heterojunction organic solar cells: One-dimensional effective semiconductor versus two-dimensional onor/acceptor model, Phys. Rev. B., 86 (2012) 075315.
[12] B. Ray and M. A. Alam, Random vs regularized OPV: Limits of performance gain of organic bulk heterojunction solar cells by morphology engineering, Sol. Energy Mater. Sol. Cells, 99 (2012) 204.
[13] M. Pfeiffer , K. Leo, X. Zhou, J.S. Huang, M. Hofmann, A. Werner, J. Blochwitz-Nimoth, Doped organic semiconductors: Physics and application in light emitting diodes, Organic Elec. 4 (2003) 89103.
[14] B. A. Gregg, Transport in Charged Defect-Rich p-Conjugated Polymers, J. Phys. Chem. C, 113 (2009) 5899.
[15] B. A. Gregg, Charged defects in soft semiconductors and their influence on organic photovoltaics, Soft Matter., 5 (2009) 2985
[16] A. Nollau, M. Pfeiffer, T. Fritz, K. Leo, Controlled n-type doping of a molecular Organic semiconductor: naphthalenetetracarboxylic dianhydride (NTCDA) doped with bis (ethylenedithio)- tetrathiafulvalene (BEDT-TTF), J. Appl. Phys., 87 (2000) 4340-4343.
[17] A. Veysel Tunc, A. De Sio, D. Riedel, F. Deschler, E. Da Como, J. Parisi, E. von Hauff, Molecular doping of low-bandgap-polymer: fullerene solar cells: Effects on transport and solar cells, Org. Electron., 13 (2012) 290.
[18] B. Maennig, M. Pfeiffer, A. Nollau, X. Zhou, K. Leo, P. Simon, Controlled p-type doping of polycrystalline and amorphous organic layers: Self-consistent description of conductivity and field-effect mobility by a microscopic percolation model, Phys. Rev. B, 64 (2001) 195208.