نوع مقاله : پژوهشی

نویسنده

دانشکده فنی و مهندسی، دانشگاه آیت الله بروجردی

چکیده

تاکنون بیشتر پژوهش‏ ها و بررسی‏ ها پیرامون جذب و انتشار امواج پلاسمون سطحی بر گرافین و الگوهای مختلف ایجاد شده بر آن، بر اساس لایه ‏های نشانده شده بر زیرلایه های همسانگرد بوده است. در این مقاله، ابتدا ساختار گرافین بر زیرلایه نیترید بور هگزاگونال، به‏ عنوان یک زیرلایه ناهمسانگرد، ضریب گذردهی الکتریکی مؤثر و ضریب بازتاب آن، و نیز امکان کنترل آنها از طریق تغییر در تراز پتانسیل شیمیایی گرافین مطالعه می‏شود. در ادامه، ویژگی‏ های انتشار امواج پلاسمون سطحی، بر نانونوارهای گرافین نشانده شده بر این زیرلایه ناهمسانگرد تک‏ محوره به‏صورت تحلیلی و شبیه‏ سازی بررسی می‏شود. به‏ کارگیری چنین زیرلایه‏ هایی می‏تواند تلفات انتشار را در مقایسه با دیگر زیرلایه ‏ها به‏ میزان قابل توجهی کاهش دهد. نتایج این بررسی می‏تواند در تحلیل جاذب ‏ها و آرایه ‏هایی متناوب از نانونوار گرافین بر زیرلایه ‏های نیترید بور هگزاگونال به ‏کار گرفته شود.

کلیدواژه‌ها

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, “Electric field effect in atomically thin carbon films,” Science, Vol. 306, pp. 666-669, 2004.
[2] A. Dolatabady, N. Granpayeh, and V. Foroughi Nezhad, “A nanoscale refractive index sensor in two dimensional plasmonic waveguide with nanodisk resonator,” Opt. Commun. Vol. 300, pp. 265-268, 2013.
[3] A. Dolatabady, N. Granpayeh, and M. Salehi, “Ferrite loaded graphene based plasmonic waveguide,” Opt. Quant. Electron. Vol. 50, pp. 1-11, 2018.
[4] F. Ghasemi, S. Roshan Entezar, and S. Razi, “Graphene based photonic crystal optical filter: Design and exploration of the tunability,” Phys. Lett. A. Vol. 383, pp. 2551-2560, 2019.
[5] S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. Vol. 108, p. 047401, 2012.
[6] M. Ono, M. Hata, M. Tsunekawa, K. Nozaki, H. Sumikura, H. Chiba, and M. Notomi, “Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides,” Nat. Photon. Vol. 14, pp. 37-43, 2020.
[7] H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. Vol. 40, pp. 2592–2595, 2015.
[8] M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express, Vol. 19, pp. 17413–17420, 2011.
[9] X. Cao, Y. Zhang, Z. Han, W. Li, G. Liu, Z. Xue, Y. Jin, and A. Wu, “Perfect near-infrared absorption of graphene with hybrid dielectric nanostructures,” J. Mater. Sci. Mater. Vol. 31, pp. 5820-5826, 2020.
[10] H.A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. Vol. 9, pp. 205–213, 2010.
[11] C. Huang, Y. Zhang, L. Liang, H. Yao, F. Qiu, and W. Liu, “Analysis of graphene-based tunable THz four-band absorption sensors,” Appl. Opt. Vol. 61, pp. 2103-2107, 2022.
[12] Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection,” Nano Lett. Vol. 14, pp. 3749-3754, 2014.
[13] J. Linder and K. Halterman, “Graphene-based extremely wide-angle tunable metamaterial absorber,” Phys. Opt. Vol. 1602, p. 01466, 2016.
[14] G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express, Vol. 24, pp. 1518–1527, 2016.
[15] Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene baed tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express, Vol. 22, pp. 22743-22752, 2014.
[16] A. Dolatabady, N. Granpayeh, and M. Abedini, “Frequency-tunable logic gates in graphene nano-waveguides,” Photonic Netw. Commun. Vol. 39, pp. 187-194, 2020.
[17] H. Hajian, A. Ghobadi, B. Butun, and E. Ozbay, “Tunable, omnidirectional, and nearly perfect resonant absorptions by a graphene-hBN based hole array metamaterial,” Opt. Express, Vol. 26, pp. 16940-16954, 2018.
[18] V.W. Brar, M.S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L.B. Kim, M. Choi, and H. Atwater, “Hybrid surfacephonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures,” Nano Lett. Vol. 14, pp. 3876–3880, 2014.
[19] Y. Jia, H. Zhao, Q. Guo, X. Wang, H. Wang, and F. Xia, “Tunable plasmon–phonon polaritons in layered graphene–hexagonal boron nitride heterostructures,” ACS Photonics, Vol. 2, pp. 907–912, 2015.
[20] M. Yankowitz, Q. Ma, P. Jarillo-Herrero, and B.J. LeRoy, “van der Waals heterostructures combining graphene and hexagonal boron nitride,” Nat. Rev. Phys. Vol. 1, pp. 112-125, 2019.
[21] C. Luo, S.G. Johnson, J.D. Joannopoulos, and J.B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B, Vol. 65, p. 201104(R), 2002.
[22] A.Y. Nikitin, E. Yoxall, M. Schnell, S. Velez, I. Dolado, P.A. Gonzalez, F. Casanova, L.E. Hueso, and R. Hillenbrand, “Nanofocusing of hyperbolic phonon polaritons in a tapered boron nitride slab,” ACS Photonics, Vol. 3, pp. 924-929, 2016.
[23] D.R. Smith and D. Schurig, “Electromagnetic wave propagation in a media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. Vol. 90, p. 077405, 2003.
[24] S. Shah, X. Lin, L. Shen, M. Renuka, B. Zhang, and H. Chen, “Interferenceless polarization splitting through nanoscale van der Waals heterostructures,” Phys. Rev. Appl. Vol. 10, p. 034025, 2018.
[25] K. Moon and S.Y. Park, “Graphene-based plasmonic switch using resonant coupling to the local plasmon resonance,” Phys. Rev. Appl. Vol. 11, p. 034074, 2019.
[26] A. Woessner, M.B. Lundeberg, Y. Gao, A. Principi, P.A. Gonzalez, M. Carrega, K. Wantanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F.H.L. Koppens, “Highly confined low-loss plasmons in grapheneboron nitride heterostructures,” Nat. Mater. Vol. 14, pp. 421-425, 2015.
[27] D.G. Baranov, J.H. Edgar, T. Hoffman, N. Bassim, and J.D. Caldwell, “Perfect interferenceless absorption at infrared frequencies by a van der Waals crystal,” Phys. Rev. B, Vol. 92, p. 201405, 2015.
[28] A. Dolatabady, S. Asgari, and N. Granpayeh, “Tunable mid-infrared nanoscale graphene-based refractive index sensor,” IEEE Sens. J. Vol. 18, pp. 569-574, 2017.
   
[29] B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express, Vol. 21, pp. 17089–17096, 2013.
[30] Z. Jacob, “Nanophotonics: Hyperbolic phonon-polaritons,” Nat. Mater. Vol. 13, pp. 1081–1083, 2014.
[31] S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. Vol. 10, pp. 682–686, 2015.
[32] A. Dolatabady and N. Granpayeh, “Tunable far-infrared plasmonically induced transparency in graphene based nano-structures,” J. Opt. Vol. 20, p. 075001, 2018.
[33] C. Zhang, B. Yang, X. Wu, T. Lu, Y. Zheng, and W. Su, “Calculation of the effective dielectric function of composites with periodic geometry,” Physica B, Vol. 293, pp. 16–32, 2000.
[34] C.A. Balanis, Advanced Engineering E;ectromagnetics, 2nd Ed. John Wiley & Sons, 2012.
[35] C. Tuo and L. Xuan-Lui, “Surface Plasmon and Fabry-Perot enhanced magneto-optical Kerr effect in graphene microribbons,” Chinese. Phys. Lett. Vol. 32, p. 024204, 2015.
[36] M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B, Vol. 80, p. 245435, 2009.
[37] G.W. Hanson, “Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. Vol. 104, p. 084314, 2008.