نوع مقاله : پژوهشی

نویسندگان

دانشگاه آزاد اسلامی واحد شیراز

چکیده

در این تحقیق به بررسی تأثیر میدان مغناطیسی بر ترازهای انرژی در نقطه کوانتومی  و پادنقطه کوانتومی  می‌پردازیم. محاسبات عددی که با استفاده از روش تفاضل محدود انجام گرفته است، نشان می‌دهند که تأثیر میدان مغناطیسی بر ترازهای انرژی نقطه و پادنقطه کوانتومی کاملاً متفاوت است. همچنین در ادامه با استفاده از سه نوع قطبش خطی ( )، قطبش دایروی راست‌گرد ( ) و قطبش دایروی چپ‌گرد ( ) احتمال گذار بین ترازهای  و  برای نقطه و پاد نقطه کوانتومی در حضور میدان مغناطیسی محاسبه می‌گردد

کلیدواژه‌ها

[1] Mowbray, D J. & Skolnick, M S. (2005). New physics and devices based on self-assembled semiconductor quantum dots Journal of Physics D: Applied Physics, 38 (13), 2059
[2] Vahdani, M R K. & Rezaei, G. (2010). Intersubband optical absorption coefficients and refractive index changes in a parabolic cylinder quantum dot Physics Letters A, 374 (4), 637-643
[3] Jafari, A R. (2014). Study of oscillator strengths of hydrogenic impurity in an inhomogeneous finite and infinite spherical quantum dots Physica B, 446, 17-21
[4] Yilmaz, S. & Şafak, H. (2007). Oscillator strengths for the intersubband transitions in a CdS–SiO 2 quantum dot with hydrogenic impurity Physica E: Low-dimensional Systems and Nanostructures, 36 (1), 40-44
[5] Yakar, Y, Çakır, B. & Özmen, A. (2018). Dipole and quadrupole polarizabilities and oscillator strengths of spherical quantum dot Chemical Physics, 513, 213-220
[6] Naimi, Y, Vahedi, J. & Soltani, M R. (2015). Effect of position-dependent effective mass on optical properties of spherical nanostructures Optical and Quantum Electronics, 47, 2947-2956
[7] Sadeghi, E. (2009). Impurity binding energy of excited states in spherical quantum dot Phys E, 41 (7), 1319-1322
[8] Naimi, Y. & Jafari, A R. (2012). Oscillator strengths of the intersubband electronic transitions in the multi-layered nano-antidots with hydrogenic impurity J Comput Electron, 11:414-420
[9] Karimi, M J. & Rezaei, G. (2012). Magnetic field effects on the linear and nonlinear optical properties of coaxial cylindrical quantum well wires J Appl Phys, 111, 064313
[10] Jafari, A R. & Naimi, Y. (2013). Linear and nonlinear optical properties of multi-layered spherical nano-systems with donor impurity in the center J Comput Electron, 12:36-42
[11] Davatolhagh, S., Jafari, A.R. & Vahdani, M R K. (2012). Oscillator strengths of the intersubband electronic transitions in the hydrogenic nanoantidots Superlattices and Microstructures, 51 (1), 62-72
[12] Kostic, R. & Stojanovic, D. (2020). Intersubband transitions in spherical quantum dot quantum well nanoparticle Opt Quant Electron, 52:285
[13] Holovatsky, V.A., Voitsekhivska, O M. & Yakhnevych, M Y. (2017). Effect of magnetic field on an electronic structure and intraband quantum transitions in multishell quantum dots Physica E, 93:295-300
[14] Sadeghi, E. (2011). Electric field and impurity effects on optical property of a three-dimensional quantum dot: A combinational potential scheme, Superlattices and Microstructures, 50 (4), 331-339
[15] Bychkov, Yu A. & Rashba, E I. (1984). Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, Phys C: Solid State Phys, 17, 6039
[16] Raigoza, N., Duque, C A., Reyes-Gómez, E. & Oliveira, L E. (2005). Effects of hydrostatic pressure and applied electric fields on the exciton states in GaAs/Ga1−xAlxAs quantum wells Physica B: Condensed Matter, 367 (1), 267-274
[17] Yakar, Y., Çakır, B. & Özmen, A. (2021). Magnetic Field Effects on Oscillator Strength, Dipole Polarizability and Refractive Index Changes in Spherical Quantum Dot Chemical Physics Letters, 767, 138346
[18] Dane, C., Akbas, H., Guleroglu, A. & Kasapoglu, S.A.K. (2011). The hydrostatic pressure and electric field effects on the normalized binding energy of hydrogenic impurity in a GaAs/AlAs spherical quantum dot Phys E, 44 (1), 186-189
[19] Baser, P., Elagoz, S. & Kartal, D. (2010). The effects of pressure and barrier height on donor binding energy in GaAs/Ga1−xAlxAs cylindrical quantum well wires Phys B, 405 (16),3239-3242
[20] Rezaei, G. & Shojaeian Kish, S. (2013). Linear and nonlinear optical properties of a hydrogenic impurity confined in a two-dimensional quantum dot: Effects of hydrostatic pressure, external electric and magnetic fields Superlattices Microstructures, 53,99-112
[21] Xie, W. (2012). Electron Raman scattering of a two-dimensional pseudodot system Phys Lett A, 376 (19), 1657-1660
[22] Perez-Merchancano, S T., Franco, J., & Silva-Valenci, J. (2008). The effects of pressure and barrier height on donor binding energy in GaAs/Ga1−xAlxAs cylindrical quantum well wires Microelectron J, 39 (3-4), 383-386
[23] Liang, S., Xie, W., Li, X. & Shen, H. (2011). Photoionization and binding energy of a donor impurity in a quantum dot under an electric field: Effects of the hydrostatic pressure and temperature Superlattices Microstructures, 49 (6), 623-631
[24] S M Bilankohi, M Ebrahimzadeh, T Ghaffary. (2015). Study of the properties of Au/Ag core/shell nanoparticles and its application, Indian Journal of Science and Technology 8 (2015) 31-33
[25] Safarpour, M., Moradi, M. & Barati, M. (2012). Hydrostatic pressure and temperature effects on the electronic energy levels of a spherical quantum dot placed at the center of a nano-wire Superlattices Microstructures, 52 (4), 687-696
[24] Liang, S. & Xie, W. (2011). Effects of the hydrostatic pressure and temperature on optical properties of a hydrogenic impurity in the disc-shaped quantum dot Phys B, 406 (11), 2224-2230
[27] Sivakami, A. & Gayathri, V. (2013). Hydrostatic pressure and temperature dependence of dielectric mismatch effect on the impurity binding energy in a spherical quantum dot Superlattices Microstructures, 58 (11), 218-227
[28] Kasapoglu, E. (2008). The hydrostatic pressure and temperature effects on donor impurities in GaAs/Ga1 − xAlxAs double quantum well under the external fields Phys Lett A, 373 (1), 140-143
[29] Farkoush, B A., Safarpour, Gh. & Zamani, A. (2013). Linear and nonlinear optical absorption coefficients and refractive index changes of a spherical quantum dot placed at the center of a cylindrical nano-wire: Effects of hydrostatic pressure and temperature Superlattices Microstructures, 59, 66-76
[30] Erdogan, I., Akankan, O. & Akbas, H. (2013). Simultaneous effects of temperature, hydrostatic pressure and electric field on the self-polarization and electric field polarization in a GaAs/Ga0 7Al0 3As spherical quantum dot with a donor impurity Superlattices Microstructures, 59, 13-20
[31] Jahan, K L., Boda, A., Shanka, I V., Raju, Ch N. & Chatterjee, A. (2018). Magnetic feld efect on the energy levels of an exciton in a GaAs quantum dot: Application for excitonic lasers Scientific Reports, 8:5073
[32] Tanhaei, M H. & Rezaei, G. (2016). Hydrogenic impurity, external electric and magnetic fields effects on the nonlinear optical properties of a multi-layer spherical quantum dot Superlattices and Microstructures, 98, 29-36
[33] Sadeghi, E. & Rezaei, G. (2010). Effect of magnetic field on the impurity binding energy of the excited states in spherical quantum dot Pramana, 75 (4), 749-755
[34] Akır, B C. Yakar, Y. & Ozmen, A. (2017). Linear and nonlinear absorption coefficients of spherical quantum dot inside external magnetic field Physica B: Condensed Matter, 510, 86-91
[35] Sakurai, J J. (1967). Advanced quantum Mechanics Reading MA: Addison- wesley
[36] E B Al, E Kasapoglu, S Sakiroglu, H Sari, I Sokmen, C A Duque. (2020). Binding energies and optical absorption of donor impurities in spherical quantum dot under applied magnetic field, Physica E 119 (2020) 114011
[37] G V B de Souza, A Bruno-Alfonso. (2015). Finite-difference calculation of donor energy levels in a spherical quantum dot subject to a magnetic field, Physica E 66 (2015) 128–132
   
 [38] Zettili, N. (2007). Quantum Mechanics Concepts and Applications Vol II (337-340)
[39] Boyd, R. (2007). Nonlinear Optics (3rd Edition) New York, United State