نوع مقاله : پژوهشی

نویسندگان

1 1. گروه فیزیک، دانشگاه پیام نور، تهران، ایران 2. مرکز مطالعات و همکاری‌های علمی بین‌المللی (CISSC)، وزارت علوم، تحقیقات و فناوری، جمهوری اسلامی ایران.

2 دانشگاه فنی کارادنیز، دانشکده مهندسی، گروه مهندسی متالورژی و مواد، ترابزون، ترکیه

3 دانشکده مهندسی، مهندسی برق و الکترونیک، گروه الکترونیک، دانشگاه آتاتورک، ارزروم، ترکیه

4 گروه فیزیک، دانشگاه ارزینجان بینالی ییلدیریم، ارزینجان 24100، ترکیه

10.30473/jphys.2025.74953.1245

چکیده

در این پژوهش، عملکرد الکتریکی و حرارتی سیم‌های کامپوزیتی ساخته‌شده از مس با پوشش نانولوله‌های کربنی تک‌دیواره و رزین رسانای حرارتی مورد بررسی قرار گرفت. طیف‌سنجی رامان حضور موفق نانولوله‌های کربنی تک‌دیواره با ساختار بلوری منظم را تأیید کرد و تصویر میکروسکوپ الکترونی، توزیع یکنواخت نانولوله‌ها و لایه رزین را بر سطح سیم مسی نشان داد. نتایج حاصل از نمودارهای مقاومت ویژه و دما در برابر چگالی جریان و شدت جریان نشان داد که سیم کامپوزیتی نسبت به سیم مسی مرجع عملکرد بهتری دارد؛ به‌گونه‌ای که در جریان‌های بالا، مقاومت ویژه کمتری از خود نشان می‌دهد و تا دماهای بالاتری بدون تخریب ساختاری پایدار می‌ماند. این بهبود عملکرد را می‌توان به هدایت الکتریکی و حرارتی بالای نانولوله‌ها و نقش تثبیت‌کننده و خنک‌کننده رزین نسبت داد. در مجموع، استفاده از نانولوله‌های کربنی و رزین رسانا در ساختار سیم‌های مسی منجر به بهبود چشمگیر پایداری حرارتی و تحمل جریان شده و این ترکیب را برای کاربردهای توان بالا، خطوط انتقال و سیستم‌های الکترونیکی حساس بسیار مناسب می‌سازد.

کلیدواژه‌ها

[1] Gür TM. Review of electrical energy storage technologies, materials, and systems: challenges and prospects for large-scale grid storage. Energy & environmental science. 2018;11(10):2696-767.
[2] Hadjipaschalis I, Poullikkas A, Efthimiou V. Overview of current and future energy storage technologies for electric power applications. Renewable and sustainable energy reviews. 2009 Aug 1;13(6-7):1513-22.
[3] Czerwinski F. Aluminum alloys for electrical engineering: a review. Journal of Materials Science. 2024 Aug;59(32):14847-92.
[4] Murashkin MY, Sabirov I, Sauvage X, Valiev RZ. Nanostructured Al and Cu alloys with superior strength and electrical conductivity. Journal of Materials Science. 2016 Jan;51(1):33-49.
[5] Ujah CO, Kallon DV, Aigbodion VS. Overview of electricity transmission conductors: challenges and remedies. Materials. 2022 Nov 15;15(22):8094.
[6] Mao Q, Liu Y, Zhao Y. A review on copper alloys with high strength and high electrical conductivity. Journal of Alloys and Compounds. 2024 Apr 9:174456.
[7] Raabe D, Tasan CC, Olivetti EA. Strategies for improving the sustainability of structural metals. Nature. 2019 Nov 7;575(7781):64-74.
[8] Zhang L, Xu Z. A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. Journal of Cleaner Production. 2016 Jul 20;127:19-36.
[9] Zhang X, Lu W, Zhou G, Li Q. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Advanced Materials. 2020 Feb;32(5):1902028.
[10] Zhang S, Nguyen N, Leonhardt B, Jolowsky C, Hao A, Park JG, Liang R. Carbon‐nanotube‐based electrical conductors: fabrication, optimization, and applications. Advanced Electronic Materials. 2019 Jun;5(6):1800811.
[11] Lekawa‐Raus A, Patmore J, Kurzepa L, Bulmer J, Koziol K. Electrical properties of carbon nanotube-based fibers and their future use in electrical wiring. Advanced Functional Materials. 2014 Jun;24(24):3661-82.
[12] Li Y, Huang X, Zeng L, Li R, Tian H, Fu X, Wang Y, Zhong WH. A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites. Journal of Materials Science. 2019 Jan;54:1036-76.
[13] Bandaru PR. Electrical properties and applications of carbon nanotube structures. Journal of nanoscience and nanotechnology. 2007 Apr 1;7(4-5):1239-67.
[14] Terrones M. Carbon nanotubes: synthesis and properties, electronic devices and other emerging applications. International materials reviews. 2004 Dec 1;49(6):325-77.
[15] Oluwalowo A, Nguyen N, Zhang S, Park JG, Liang R. Electrical and thermal conductivity improvement of carbon nanotube and silver composites. Carbon. 2019 May 1;146:224-31.
[16] Oluwalowo A, Nguyen N, Zhang S, Park JG, Liang R. Electrical and thermal conductivity improvement of carbon nanotube and silver composites. Carbon. 2019 May 1;146:224-31.
[17] Oluwalowo A, Nguyen N, Zhang S, Park JG, Liang R. Electrical and thermal conductivity improvement of carbon nanotube and silver composites. Carbon. 2019 May 1;146:224-31.
[18] Fu S, Chen X, Liu P. Preparation of CNTs/Cu composites with good electrical conductivity and excellent mechanical properties. Materials Science and Engineering: A. 2020 Jan 13;771:138656.
[20] Paradise M, Goswami T. Carbon nanotubes–production and industrial applications. Materials & design. 2007 Jan 1;28(5):1477-89.
[21] Jarosz P, Schauerman C, Alvarenga J, Moses B, Mastrangelo T, Raffaelle R, Ridgley R, Landi B. Carbon nanotube wires and cables: near-term applications and future perspectives. Nanoscale. 2011;3(11):4542-53.