[1] Chen H. Y. F., Tang W. T., He J. J., Yin M. S., Wang M., Xie F. X., Bi E. B., Yang X. D., and Gratzel M. (2017) A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature, 550, 92–95.
[2] Wang Z., Lin Q., Chmiel F.P., Sakai N., Herz L.M. and Snaith H.J. (2017) Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesiumformamidinium lead halide perovskites. Nat. Energy, 2(9) 1-10.
[3] Eperon G.E., Stranks S.D., Menelaou C., Johnston M.B., Herza L.M., and Snaith H.J. (2014) Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar Cells. Energy Environ. Sci., 7(3) 982–988.
[4] Shi Z., Li S., Li Y., Ji H., Li X. Wu D., Xu T., Chen Y., Tian Y., Zhang Y., Shan C., and Du G. (2018) Strategy of solution-processed all-inorganic heterostructure for humidity/temperature-stable perovskite quantum dot light-emitting diodes. ACS Nano, 12(2) 1462–1472.
[5] Jeong M., et al., (2022) Large-area perovskite solar cells employing spiro-Naph hole transport material. Nat. Photonics, 16(2) 119–125.
[6] Lin R., et al., (2022) All-perovskite tandem solar cells with improved grain surface passivation. Nature, 603 (7899) 73–78.
[7] Xiao K., et al., (2022) All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface anchoring zwitterionic antioxidant, Nat. Energy, 5(11) 870–880.
[8] Stranks S.D., and Snaith H. J. (2015) Metal-halide perovskites for photovoltaic and light-emitting devices, Nat. Nanotechnol., 10(5) 391–402.
[9] Hörantner M. T. , and Snaith H. J. (2017) Predicting and optimizing the energy yield of perovskite-on-silicon tandem solar cells under real world conditions. Energy Environ. Sci., 10(9) 1983–1993.
[10] Berhe et al.,(2016) Organometal halide perovskite solar cells: degradation and stability, Energy Environ. Sci., 9(2), 323–356.
[11] Ahmadi N. (2024) The Effect of Au Nanocomposites Periodic Array on the Efficiency of Lead-Free Double Perovskite Solar Cells, Optoelectronic, 6(3),47-54.
[12] Chen M., et al. (2018) Cesium titanium (IV) bromide thin films based stable lead-free perovskite solar cells, Joule, 2(3), 558–570.
[13] Weber S., et al., (2018) Infuence of the iodide to bromide ratio on crystallographic and optoelectronic properties of rubidium antimony halide perovskites, ACS Appl. Energy Mater., 2(1), 539–547.
[14] Umar F., et al., (2019) Dimensionality controlling of Cs3Sb2I9 for efficient all inorganic planar thin film solar cells by HCl-assisted solution method, Adv. Opt. Mater., 7(5),1801368.
[15] Dai W., et al., (2019) Lead-free, stable, and effective doubleFA4GeІІSbІІІCl12 perovskite for photovoltaic applications, Sol. Energy Mater. Sol. Cells, 192, 140–146.
[16] Kulkarni A., et al., (2019) Performance enhancement of AgBi2I7solar cells by modulating a solvent-mediated adduct andtuning remnant BiI3 in one-step crystallization, Chem.Commun., 55(28), 4031–4034.
[17] Ahmad K., et al., (2019) A (CH3NH3)3Bi2I9 Perovskite Based on a Two-Step Deposition Method: Lead-Free, Highly Stable,and with Enhanced Photovoltaic Performance, Chem Electro Chem, 6(4), 1192–1198.
[18] Ahmad S., et al. (2019) Triple-Cation-Based Perovskite Photocathodes with AZO Protective Layer for Hydrogen Production Applications, ACS Appl. Mater. & Interfaces, 9b04963.
[19] Crespo-Quesada M., Pazos-Outón L. M., Warnan J., Kuehnel M. F. Friend R.H., and Reisner, E. (2016) Nat. Commun. 7, 6–12.
[20] Schwartz D., et al., (2020) Air Stable, High-Efficiency, Pt-BasedHalide Perovskite Solar Cells with Long Carrier Lifetimes, Phys. Status Solidi – Rapid Res. Lett., 14(8), 2000182.
[21] Shamna M., and Sudheer K. (2022) Device modeling of CS2PtI6-based perovskite solar cell with diverse transport materials and contact metal electrodes: a comprehensive simulation study using solar cell capacitance simulator, J. Photonics Energy, 12(3), 032211.
[22] AbdelAziz H.H. et al., (2022) Evaluating the performance of Cs2ptI6−xBrx for photovoltaic and photocatalytic applications using first-principles Cs2ptI6−xBrx for photovoltaic and photocatalytic applications using first-principles study and SCAPS-1D simulation, Heliyon, 8(10), e10808.
[23] Yang S., et al., (2020) Novel lead-free material Cs2PtI6 with narrow bandgap and ultra-stability for its photovoltaic application, ACS Appl. Mater. Interfaces, 12(40), 44700–44709.
[24] Amjad A., et al. (2023) Numerical simulation of lead-free vacancy orderedCs2ptI6 based perovskite solar cell using SCAPS-1D, RSC Adv., 13, 23211–23222.
[25] Hossain, M. K., Rubel, M. H. K., Toki, G. F. I., Alam, I., Rahman, M. F., and Bencherif, H. (2022) Effect of Various Electron and Hole Transport layers on performance of CsPbI3-Based Perovskite Solar Cells: A Numerical Investigation in DFT, SCAPS-1D, and WxAMPS Frameworks. ACS Omega, 7, 43210−43230.
[26] Srivastava, S., Singh, A. K., Kumar, P., and Pradhan, B. (2022) Comparative Performance Analysis of Lead-Free Perovskites Solar Cells by Numerical Simulation, J. Appl. Phys., 131, 175001.
[27] Tan T. et al. (2016) Controllable design of solid-state perovskite solar cells by SCAPS device simulation, Solid-State Electron., 126, 75–80.
[28] Hossain S. et al. (2011) A numerical study on the prospects of high efficiency ultra thin Znx Cd1-x S/Cd te solar cell, Chalcogenide Lett., 8(4), 263–272.