نوع مقاله : پژوهشی

نویسندگان

1 دکتری، گروه فیزیک، دانشگاه پیام نور، تهران، ایران.

2 دانشیار، گروه فیزیک، دانشگاه پیام نور، تهران، ایران

چکیده

در سال‌های اخیر، سلول‌های خورشیدی پروسکایتی، گسترش سریع و بی‌نظیری را پشت سر گذاشته‌اند. از بین سلول‌های خورشیدی پروسکایتی، سلول‌های خورشیدی پروسکایتی هالید فلزی به عنوان یکی از نوآوری‌های اخیر در حوزه انرژی تجدیدپذیر شناخته می‌شوند. این سلول‌ها به دلیل کارایی بالا، بسیار مورد توجه قرار گرفته‌اند. یکی از مزایای اصلی این سلول‌ها، سهولت در تولید و امکان بهینه‌سازی خواص الکترونیکی آن‌هاست. همچنین، توانایی آن‌ها در جذب نور در طول موج‌های مختلف، می‌تواند به افزایش کارایی تبدیل انرژی منجر شود. با این حال، چالش‌هایی نظیر پایداری و عدم عمر طولانی‌مدت همچنان وجود دارد که نیاز به تحقیقات بیشتری دارد. از آنجا که بازده سلول‌های خورشیدی پروسکایتی هالید فلزی با تغییر در شکاف نواری و ابعاد ساختار می‌تواند به طور قابل توجهی افزایش یابد، در این مقاله، با تغییر در ابعاد پروسکایت هالید فلز که در ساختار تمامی آنها سرب و ید وجود دارد، شکاف نواری را با استفاده از بسته نرم‌افزاری کوانتوم اسپرسو محاسبه و کاربرد هریک از پروسکایتها را در چهاربعد (صفر،یک، دو و سه) بررسی کرده و به چالش‌ها و جهت‌گیری‌های توسعه آتی مواد پروسکایتی با ابعاد مختلف در زمینه اپتوالکترونیک پرداخته‌ایم.

کلیدواژه‌ها

[1] Zhao Y, Xiang H, Ran R, Zhou W, Wang W, Shao Z. Beyond two-dimension: One-and zero-dimensional halide perovskites as new-generation passivators for high-performance perovskite solar cells. Journal of Energy Chemistry. 2023 Aug 1;83:189-208.
[2] Szuromi P, Grocholski B. Natural and engineered perovskites. Science. 2017 Nov 10;358(6364):732-3.
[3] Zhang L, Mei L, Wang K, Lv Y, Zhang S, Lian Y, Liu X, Ma Z, Xiao G, Liu Q, Zhai S. Advances in the application of perovskite materials. Nano-Micro Letters. 2023 Dec;15(1):177.
[4] Duan D, Ge C, Rahaman MZ, Lin CH, Shi Y, Lin H, Hu H, Wu T. Recent progress with one-dimensional metal halide perovskites: from rational synthesis to optoelectronic applications. NPG Asia Materials. 2023 Feb 24;15(1):8.
[5] Wu G, Liang R, Zhang Z, Ge M, Xing G, Sun G. 2D hybrid halide perovskites: structure, properties, and applications in solar cells. Small. 2021 Oct;17(43):2103514.
[6] Zhang Z, Wang S, Liu X, Chen Y, Su C, Tang Z, Li Y, Xing G. Metal halide perovskite/2D material heterostructures: syntheses and applications. Small Methods. 2021 Apr;5(4):2000937.
[7] Zhang Z, Wang S, Liu X, Chen Y, Su C, Tang Z, Li Y, Xing G. Metal halide perovskite/2D material heterostructures: syntheses and applications. Small Methods. 2021 Apr;5(4):2000939.
[8] Sun S, Lu M, Gao X, Shi Z, Bai X, Yu WW, Zhang Y. 0D perovskites: unique properties, synthesis, and their applications. Advanced Science. 2021 Dec;8(24):2102689.
[9] Almutlaq J, Yin J, Mohammed OF, Bakr OM. The benefit and challenges of zero-dimensional perovskites. The Journal of Physical Chemistry Letters. 2018 Jun 28;9(14):4131-8.
[10] McDonald C, Ni C, Maguire P, Connor P, Irvine JT, Mariotti D, Svrcek V. Nanostructured perovskite solar cells. Nanomaterials. 2019 Oct 18;9(10):1481.
[11] Rao MK, Selvakumar M, Mahesha MG, Paramasivam S, Prabhu NS, Veerappan G, Senthilkumar S, Kamath SD. Pyrrolidinium induced templated growth of 1D-3D halide perovskite heterostructure for solar cell applications. Materials Chemistry and Physics. 2023 Jul 15;303:127668.
[12] Chen X, Zhou H, Wang H. 2D/3D halide perovskites for optoelectronic devices. Frontiers in Chemistry. 2021 Aug 19;9:715157.
[13] Surrente A, Baranowski M, Plochocka P. Perspective on the physics of two-dimensional perovskites in high magnetic field. Applied Physics Letters. 2021 Apr 26;118(17).
[14] Duan D, Ge C, Rahaman MZ, Lin CH, Shi Y, Lin H, Hu H, Wu T. Recent progress with one-dimensional metal halide perovskites: from rational synthesis to optoelectronic applications. NPG Asia Materials. 2023 Feb 24;15(1):8.
[15] Wu G, Liang R, Zhang Z, Ge M, Xing G, Sun G. 2D hybrid halide perovskites: structure, properties, and applications in solar cells. Small. 2021 Oct;17(43):2103514
[16] Mirershadi S, Sattari F, Saridaragh MM. Effects of halogen replacement on the efficiency of luminescent solar concentrator based on methylammonium lead halide perovskite. Solar Energy Materials and Solar Cells. 2020 Nov 1;186:365-72.
[17] Lin YP, Hu S, Xia B, Fan KQ, Gong LK, Kong JT, Huang XY, Xiao Z, Du KZ. Material design and optoelectronic properties of three-dimensional quadruple perovskite halides. The Journal of Physical Chemistry Letters. 2021 Aug 23;10(17):5219-25.
[18] Long G, Sabatini R, Saidaminov MI, Lakhwani G, Rasmita A, Liu X, Sargent EH, Gao W. Chiral-perovskite optoelectronics. Nature Reviews Materials. 2020 Jun;5(6):423-39.
[19] Knight AJ, Patel JB, Snaith HJ, Johnston MB, Herz LM. Trap states, electric fields, and phase segregation in mixed‐halide perovskite photovoltaic devices. Advanced Energy Materials. 2020 Mar;10(9):1903488.
[20] Selvakumar P. Methylammonium lead halide based perovskite solar cells.
[21] Hoefler SF, Trimmel G, Rath T. Progress on lead-free metal halide perovskites for photovoltaic applications: a review. Monatshefte für Chemie-Chemical Monthly. 2017 May;148:795-826.
[22] Gong J, Hao M, Zhang Y, Liu M, Zhou Y. Layered 2D halide perovskites beyond the Ruddlesden–Popper phase: tailored interlayer chemistries for high‐performance solar cells. Angewandte Chemie. 2022 Mar 1;134(10):e202112022.
[23] Irannejad N, Rezaei B, Ensafi AA. Self-healing 2D/3D perovskite for efficient and stable pin perovskite solar cells. Chemosphere. 2023 Jan 1;311:136893.
[24] Metcalf I, Sidhik S, Zhang H, Agrawal A, Persaud J, Hou J, Even J, Mohite AD. Synergy of 3D and 2D perovskites for durable, efficient solar cells and beyond. Chemical Reviews. 2023 Jul 10;123(15):9565-652.
[25] Mahmud MA, Duong T, Peng J, Wu Y, Shen H, Walter D, Nguyen HT, Mozaffari N, Tabi GD, Catchpole KR, Weber KJ. Origin of efficiency and stability enhancement in high‐performing mixed dimensional 2D‐3D perovskite solar cells: a review. Advanced Functional Materials. 2022 Jan; 32(3):2009164.
[26] Zhang Q, Hao F, Li J, Zhou Y, Wei Y, Lin H. Perovskite solar cells: must lead be replaced–and can it be done?. Science and Technology of advanced MaTerialS. 2018 Dec 31;19(1):425-42
[27] Ahmed T, Salim T, Lam YM, Chia EE, Zhu JX. Optical properties of organometallic perovskite: An ab initio study using relativistic GW correction and Bethe-Salpeter equation. Europhysics Letters. 2019 Jan 12;108(6):67015. [28]. Tao SX, Cao X, Bobbert PA. Accurate and efficient band gap predictions of metal halide perovskites using the DFT-1/2 method: GW accuracy with DFT expense. Scientific reports. 2017 Oct 30;7(1):14386.
[29] Nelson CA, Monahan NR, Zhu XY. Exceeding the Shockley–Queisser limit in solar energy conversion. Energy & Environmental Science. 2013; 6(12): 3508-19.
[30] Nelson CA, Monahan NR, Zhu XY. Exceeding the Shockley–Queisser limit in solar energy conversion. Energy & Environmental Science. 2013;6(12):3508-19..
[31] Trifiletti V, Asker C, Tseberlidis G, Riva S, Zhao K, Tang W, Binetti S, Fenwick O. Quasi-zero dimensional halide perovskite derivates: Synthesis, status, and opportunity. Frontiers in Electronics. 2021 Oct 11;2:758603.
[32] Han Y, Yue S, Cui BB. Low‐dimensional metal halide perovskite crystal materials: structure strategies and luminescence applications. Advanced Science. 2021 Aug;8(15):2004805.
[33] Mao L, Stoumpos CC, Kanatzidis MG. Two-dimensional hybrid halide perovskites: principles and promises. Journal of the American Chemical Society. 2018 Nov 6;141(3):1171-90.
[34] Ostroverkhova O. Organic optoelectronic materials: mechanisms and applications. Chemical reviews. 2020 Nov 23;116(22):13279-412.
[35] Li Z, Yang M, Park JS, Wei SH, Berry JJ, Zhu K. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials. 2019 Jan 12;28(1):284-92.
[36] Dimesso L, Quintilla A, Kim YM, Lemmer U, Jaegermann W. Investigation of formamidinium and guanidinium lead tri-iodide powders as precursors for solar cells. Materials Science and Engineering: B. 2016 Feb 1;204:27-33.
[37] Zheng Z, Wang S, Hu Y, Rong Y, Mei A, Han H. Development of formamidinium lead iodide-based perovskite solar cells: efficiency and stability. Chemical Science. 2022;13(8):2167-83. [38] Bhaumik S, Bruno A, Mhaisalkar S. Broadband emission from zero-dimensional Cs 4 PbI 6 perovskite nanocrystals. RSC advances. 2020;10(23):13431-6..
[39] Yunakova ON, Miloslavskii VK, Kovalenko EN. Exciton absorption spectrum of thin CsPbI 3 and Cs 4 PbI 6 films. Optics and Spectroscopy. 2012 Jan;112:91-6.
[40] Wu H, Lin Z, Song J, Zhang Y, Guo Y, Zhang W, Huang R. Boosting the Self-Trapped Exciton Emission in Cs4SnBr6 Zero-Dimensional Perovskite via Rapid Heat Treatment. Nanomaterials. 2023 Aug 6;13(15):2259.
[41] Duan D, Ge C, Rahaman MZ, Lin CH, Shi Y, Lin H, Hu H, Wu T. Recent progress with one-dimensional metal halide perovskites: from rational synthesis to optoelectronic applications. NPG Asia Materials. 2023 Feb 24;15(1):8.
[42] Hu M, Lyu J, Murrietta N, Fernández S, Michaels W, Zhou Q, Narayanan P, Congreve DN. 2D mixed halide perovskites for ultraviolet light-emitting diodes. Device. 2024 Nov 15;2(11). [43]. Hua Y, Zhou Y, Hong D, Wan S, Hu X, Xie D, Tian Y. Identification of the Band Gap Energy of Two-dimensional (OA) 2 (MA) n− 1Pb n I3 n+ 1 Perovskite with up to 10 Layers. The Journal of Physical Chemistry Letters. 2019 Oct 29;10(22):7025-30.
[44] Yadav A, Rahil M, Ahmad S. Facile and Effective Band Gap Engineering of 2D Ruddlesden–Popper Perovskites with Improved Structural and Optoelectronic Properties. ACS Applied Electronic Materials. 2023 Feb 7;5(2):1024-34.
[45] Wang K, Subhani WS, Wang Y, Zuo X, Wang H, Duan L, Liu S. Metal cations in efficient perovskite solar cells: progress and perspective. Advanced Materials. 2019 Dec;31(50):1902037. [46]. Nie R, Sumukam RR, Reddy SH, Banavoth M, Seok SI. Lead-free perovskite solar cells enabled by hetero-valent substitutes. Energy & environmental science. 2020;13(8):2363-85.