[1] Chen, W., Li, C., Liang, W., Li, Y., Zou, Z., Xie, Y., et al. (2022). The Roles of Optogenetics and Technology in Neurobiology: A Review. Front Aging Neurosci, 14, 867863. DOI: 10.3389/fnagi.2022.867863.
[2] Wells, J., Kao, C., Konrad, P., Milner, T., Kim, J., Mahadevan-Jansen, A., et al. (2007). Biophysical Mechanisms of Transient Optical Stimulation of Peripheral Nerve. Biophysical Journal, 93(7), 2567-80. DOI: 10.1529/biophysj.107.104786.
[3] Wang, J., Wagner, F., Borton, D. A., Zhang, J., Ozden, I., Burwell, R. D., et al. (2012). Integrated Device for Combined Optical Neuromodulation and Electrical Recording for Chronic in vivo Applications. Journal of Neural Engineering, 9(1), 016001. DOI: 10.1088/1741-2560/9/1/016001.
[4] Jiang, S., Wu, X., Rommelfanger, N. J., Ou, Z., Hong, G. (2022) Shedding Light on Neurons: Optical Approaches for Neuromodulation. National Science Review, 9(10), nwac007. DOI: 10.1093/nsr/nwac007.
[5] Soleimani, G., Nitsche, M. A., Bergmann, T. O., Towhidkhah, F., Violante, I. R., Lorenz, R., et al. (2023). Closing the Loop Between Brain and Electrical Stimulation: Towards Precision Neuromodulation Treatments. Translational Psychiatry, 13(1), 279. DOI: 10.1038/s41398-023-02565-5.
[6] Nag, S., Thakor, N. V. (2016). Implantable Neurotechnologies: Electrical Stimulation and Applications. Med Biol Eng Comput, 54(1), 63-76. DOI: 10.1007/s11517-015-1442-0.
[7] Richter, C. P., Matic, A. I., Wells, J. D., Jansen, E. D., Walsh, J. T. (2011). Neural Stimulation with Optical Radiation.
Laser Photonics Rev, 5(1), 68-80. DOI:
10.1002/lpor.200900044.
[8] Thompson, A. C., Stoddart, P. R., Jansen, E. D. (2014). Optical Stimulation of Neurons. Current Molecular Imaging, 3(2), 162-177. DOI:
10.2174/2211555203666141117220611.
[9] Richter, C. R., Tan, X. (2014). Photons and Neurons. Hear Res, 311, 72-88.
[10] Ellis-Davies, G. (2007). Caged Compounds: Photorelease Technology for Control of Cellular Chemistry and Physiology.
Nat Methods, 4, 619–628.
DOI: 10.1038/nmeth1072.
[11] Amatrudo, J. M., Olson, J. P., Agarwal, H. K., Ellis-Davies, G. C. (2015). Caged Compounds for Multichromic Optical Interrogation of Neural Systems. Eur J Neurosci, 41(1), 5-16. DOI: 10.1111/ejn.12785.
[12] Ellis-Davies, G. C. R. (2020). Useful Caged Compounds for Cell Physiology. Acc Chem Res, 18, 53(8):1593-1604. DOI: 10.1021/acs.accounts.0c00292.
[13] Park, Y., Park, S. Y., Eom, K. (2021). Current Review of Optical Neural Interfaces for Clinical Applications.
Micromachines,
12(8), 925.
DOI: 10.3390/mi12080925.
[14] Stein, I. S., Hill, T. C., Oh, W. C., Parajuli, L. K., Zito, K. (2019). Two-Photon Glutamate Uncaging to Study Structural and Functional Plasticity of Dendritic Spines. In: Hartveit, E. (eds) Multiphoton Microscopy.
Neuromethods, 148. Humana, New York, NY. DOI:
10.1007/978-1-4939-9702-2_4.
[15] Godwin, D. W., Che, D., O'Malley, D. M., Zhou, Q. (1997). Photostimulation with Caged Neurotransmitters Using Fiber Optic Lightguides. J Neurosci Methods, 73(1), 91-106. DOI: 10.1016/s0165-0270(96)02208-x.
[16] Kramer, R. H., Fortin, D. L., Trauner, D. (2009). New Photochemical Tools for Controlling Neuronal Activity. Curr Opin Neurobiol, 19(5):544-52. DOI: 10.1016/j.conb.2009.09.004.
[17] Weinstain, R., Slanina, T., Kand, D., Klán, P. (2020). Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev, 120(24), 13135-13272. DOI: 10.1021/acs.chemrev.0c00663.
[18] Klausen, M., Blanchard-Desce, M. (2021). Two-photon Uncaging of Bioactive Compounds: Starter Guide to an Efficient IR Light Switch.
Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 48, 100423. DOI:
10.1016/j.jphotochemrev.2021.100423.
[19] Avramopoulos, A., Reis, H., Tzeli, D., Zaleśny, R., Papadopoulos, M. G. (2023). Photoswitchable Molecular Units with Tunable Nonlinear Optical Activity: A Theoretical Investigation. Molecules, 28(15), 5646. DOI: 10.3390/molecules28155646.
[20] Banghart, M., Borges, K., Isacoff, E., Trauner, D., Kramer, R. H. (2004). Light Activated Ion Channels for Remote Control of Neuronal Firing. Nat Neurosci, 7(12), 1381-1386. DOI: 10.1038/nn1356.
[21] Fino, E., Araya, R., Peterka, D. S., Salierno, M., Etchenique, R., Yuste, R. (2009). RuBi-Glutamate: Two-Photon and Visible-Light Photoactivation of Neurons and Dendritic spines. Front Neural Circuit, 3(2). DOI: 10.3389/neuro.04.002.2009.
[22] Beharry, A. A., Woolley, G. A. (2011). Azobenzene Photoswitches for Biomolecules.
Chem Soc Rev, 40(8), 4422. DOI:
10.1039/C1CS15023E.
[23] Garrido-Charles, A., Huet, A., Matera, C., Thirumalai, A., Hernando, J., Llebaria, A., et al. (2022). Fast Photoswitchable Molecular Prosthetics Control Neuronal Activity in the Cochlea. J Am Chem Soc, 144(21), 9229-9239. DOI: 10.1021/jacs.1c12314.
[24] Shapiro, M. G., Homma, K., Villarreal, S., Richter, C. P., Bezanilla, F. (2012). Infrared Light Excites Cells by Changing Their Electrical Capacitance. Nature Commun, 3, 736. DOI: 10.1038/ncomms1742.
[25] Richardson, R. T., Ibbotson, M. R., Thompson, A. C., Wise, A. K., Fallon, J. B. (2020). Optical Stimulation of Neural Tissue. Healthc Technol Lett, 7(3), 58–65. DOI: 10.1049/htl.2019.0114.
[26] Chernov, M., Roe, A. W. (2014). Infrared Neural Stimulation: A New Stimulation Tool for Central Nervous System Applications. Neurophotonics, 1(1), 011011. DOI: 10.1117/1. NPh.1.1.011011.
[27] Song, P., Li, S., Hao, W., Wei, M., Liu, J., Lin, H., et al. (2021). Corticospinal Excitability Enhancement with Simultaneous Transcranial Near-infrared Stimulation and Anodal Direct Current Stimulation of Motor Cortex. Clin. Neurophysiol, 132(5), 1018–1024. DOI: 10.1016/j.clinph.2021.01.020.
[28] Geng, J., Li, S., Wang, S., Huang, C., Lyu, Y., Hu, R., et al. (2020). Stimulating Ca2+ Photoactivation of Nerve Cells by Near-infrared Light. Acta Physica Sinica, 69(15), 158701. DOI: 10.7498/aps.69.20200489.
[29] Albert, E. S., Bec, J. M., Desmadryl, G., Chekroud, K., Travo, C., Gaboyard, S., et al. (2012). TRPV4 Channels Mediate the Infrared Laser Evoked Response in Sensory Neurons. Neurophysiol, 107(12), 3227-3234. DOI: 10.1152/jn.00424.2011.
[30] Wells, J., Kao, C., Jansen, E. D., Konrad, P., Mahadevan-Jansen, A. (2005). Application of Infrared Light for In Vivo Neural Stimulation. J Biomed Opt, 10(6), 064003. DOI: 10.1117/1.2121772.
[31] Zhang, J., He, Y., Liang, S., Liao, X., Li, T., Qiao, Z., et al. (2021). Non-invasive, Opsin-free Mid-infrared Modulation Activates Cortical Neurons and Accelerates Associative Learning. Nat. Commun, 12(1), 2730. DOI: 10.1038/s41467-021-23025-y.
[32] Liu, X., Qiao, Z., Chai, Y., Zhu, Z., Wu, K., Ji, W., et al. (2021). Nonthermal and Reversible Control of Neuronal Signaling and Behavior by Midinfrared Stimulation. Proc Natl Acad Sci, 118(10), e2015685118. DOI: 10.1073/pnas.2015685118.
[33] Kawasaki, T., Yaji, T., Ohta, T., Tsukiyama, K., Nakamura, K. (2018). Dissociation of β-Sheet Stacking of Amyloid β Fibrils by Irradiation of Intense, Short-Pulsed Mid-infrared Laser. Cell Mol Neurobiol, 38(5), 1039-1049. DOI: 10.1007/s10571-018-0575-8.
[34] Xu, Y., Magnuson, M., Agarwal, A., Tan, X., Richter, C. P. (2021). Infrared Neural Stimulation at Different Wavelengths and Pulse Shapes. Prog Biophys Mol Biol, 162, 89-100. DOI: 10.1016/j.pbiomolbio.2020.12.004.
[35] Tian, L., Wang, J., Wei, Y., Lu, J., Xu, A., Xia, M. (2017). Short-wavelength Infrared Laser Activates the Auditory Neurons: Comparing the Effect of 980 vs. 810 nm Wavelength. Lasers Med. Sci, 32(2), 357–362. DOI: 10.1007/s10103-016-2123-4.
[36] Thompson, A. C., Wade, S. A., Brown, W. G., Stoddart, P. R. (2012). Modeling of Light Absorption in Tissue During Infrared Neural Stimulation. J Biomed Opt, 17(7), 075002. DOI: 10.1117/1.JBO.17.7.075002.
[37] Chernov, M. M., Chen, G., Roe, A. W. (2014). Histological Assessment of Thermal Damage in the Brain Following Infrared Neural Stimulation. Brain Stimul, 7(3), 476-482. DOI: 10.1016/j.brs.2014.01.006.
[38] Goyal, V., Rajguru, S., Matic, A. I., Stock, S. R., Richter, C. P. (2012). Acute Damage Threshold for Infrared Neural Stimulation of the Cochlea: Functional and Histological Evaluation. Anat Rec, 295(11), 1987-1999. DOI: 10.1002/ar.22583.
[39] Thompson, A. C., Wade, S. A., Cadusch, P. J., Brown, W. G., Stoddart, P. R. (2013). Modeling of the Temporal Effects of Heating During Infrared Neural Stimulation. J Biomed Opt, 18(3), 035004. DOI: 10.1117/1.JBO.18.3.035004.
[40] Paviolo, C., Thompson, A. C., Yong, J., Brown, W. G., Stoddart, P. R. (2014). Nanoparticle-enhanced Infrared Neural Stimulation. J Neural Eng, 11(6), 065002. DOI: 10.1088/1741-2560/11/6/065002.
[41] Paviolo, C., Stoddart, P. R. (2017). Gold Nanoparticles for Modulating Neuronal Behavior. Nanomaterials (Basel), 7(4), 92. DOI: 10.3390/nano7040092.
[42] Farah, N., Zoubi, A., Matar, S., Golan, L., Marom, A., Butson, C. R., et al. (2013). Holographically Patterned Activation Using Photo-absorber Induced Neural-thermal Stimulation. J Neural Eng, 10(5), 056004. DOI: 10.1088/1741- 2560/10/5/056004.
[43] Paviolo, C., McArthur, S. L., Stoddart, P. R. (2015). Gold nanorod-assisted Optical Stimulation of Neuronal Cells. J Vis Exp, 98, e52566. DOI: 10.3791/52566.
[44] Lavoie-Cardinal, F., Salesse, C., Bergeron, É.,
Meunier, M.,
Koninck, P. D. (2016). Gold Nanoparticle-assisted All Optical Localized Stimulation and Monitoring of Ca
2+ Signaling in Neurons.
Sci Rep, 6, 20619.
DOI: 10.1038/srep20619.
[45] Eom, K., Kim, J., Choi, J. M., Kang, T., Chang, J. W., Byun, K. M., et al. (2014). Enhanced Infrared Neural Stimulation Using Localized Surface Plasmon Resonance of Gold Nanorods. Small, 10(19), 3853-7. DOI: 10.1002/smll.201400599.
[46] Liu, J., Li, J., Zhang, S., Ding, M., Yu, N., Li, J., et al. (2022). Antibody-conjugated Gold Nanoparticles as Nanotransducers for Second Near-infrared Photo-stimulation of Neurons in Rats. Nano Converg, 9(1), 13. DOI: 10.1186/s40580-022-00304-y.
[47] Eom, K., Byun, K. M., Jun, S. B., Kim, S. J., Lee, J. (2018). Theoretical Study on Gold-Nanorod-Enhanced Near-Infrared Neural Stimulation. Biophys J, 115(8), 1481-1497. DOI: 10.1016/j.bpj.2018.09.004.
[48] Deisseroth, K. (2015). Optogenetics: 10 Years of Microbial Opsins in Neuroscience. Nat Neurosci, 18, 1213–1225. DOI: 10.1038/nn.4091.
[49] Delbeke, J., Hoffman, L., Mols, K., Braeken, D., Prodanov, D. (2017). And Then There Was Light: Perspectives of Optogenetics for Deep Brain Stimulation and Neuromodulation. Front Neurosci, 11, 663. DOI: 10.3389/fnins.2017.00663.
[50] Emiliani, V., Entcheva, E., Hedrich, R., Hegemann, P., Konrad, K. R.,
Lüscher, C., et al. (2022). Optogenetics for Light Control of Biological Systems.
Nat Rev Methods Primers, 2(55). DOI:
10.1038/s43586-022-00136-4.
[51] Friedman, J. M. (2021). How the Discovery of Microbial Opsins Led to the Development of Optogenetics. Cell, 184(21), 5266-5270. DOI: 10.1016/j.cell.2021.08.022.
[52] Sridharan, S.,
Gajowa, M. A.,
Ogando,
M. B.,
Jagadisan,
U. K.,
Abdeladim,
L.,
Sadahiro,
M., et al. (2022). High-performance Microbial Opsins for Spatially and Temporally Precise Perturbations of Large Neuronal Networks.
Neuron, 110(7), 1139–1155. DOI: 10.1016/j.neuron.2022.01.008.
[53] Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., et al. (2003). Channelrhodopsin-2, a Directly Light-gated Cation-selective Membrane Channel. Proc Natl Acad Sci U S A, 100, 13940–13945. DOI: 10.1073/pnas.1936192100
[54] Boyden, E., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, k. (2005). Millisecond-timescale, Genetically Targeted Optical Control of Neural Activity.
Nat Neurosci, 8, 1263–1268.
DOI: 10.1038/nn1525.
[55] Mahmoudi, P., Veladi, H., Pakdel, F. G. (2017). Optogenetics, Tools and Applications in Neurobiology. J Med Signals Sens, 7(2), 71-79. PMID: 28553579; PMCID: PMC5437765.
[56] Shemesh, O. A., Tanese, D., Zampini, V., Linghu, C., Piatkevich, K., Ronzitti, E., et al. (2017). Temporally Precise Single-cell-resolution Optogenetics. Nat Neurosci, 20, 1796–1806. DOI: 10.1038/s41593-017-0018-8.
[57] Gunaydin, L. A., Yizhar, O., Berndt, A., Sohal, V. S., Deisseroth, K., Hegemann P. (2010). Ultrafast Optogenetic Control. Nat Neurosci, 13(3), 387-392. DOI: 10.1038/nn.2495.
[58] Zhang, F., Wang, L. P., Brauner, M., Liewald, J. F., Kay, K., Watzke N, et al. (2007). Multimodal Fast Optical Interrogation of Neural Circuitry.
Nature, 446, 633–639. DOI:
10.1038/nature05744.
[59] Gradinaru, V., Zhang, F., Ramakrishnan, C., Mattis, J., Prakash, R., Diester, I., et al. (2010). Molecular and Cellular Approaches for Diversifying and Extending Optogenetics. Cell, 141(1), 154-165. DOI: 10.1016/j.cell.2010.02.037.
[60] Feuda, R., Menon, A. K., Göpfert, M. C. (2022). Rethinking Opsins. Molecular Biology and Evolution, 39(3), msac033. DOI: 10.1093/molbev/msac033.
[61] Altahini, S., Arnoux, I., Stroh, A. (2023). Optogenetics 2.0: Challenges and Solutions Towards a Quantitative Probing of Neural Circuits. Biol Chem, 405(1), 43-54. DOI: 10.1515/hsz-2023-0194.
[62] Jacques, S. L. (2013). Optical Properties of Biological Tissues: A Review. Phys Med Biol, 58(11), R37–61. DOI: 10.1088/0031-9155/58/11/R37.
[63] Favre-Bulle, I. A., Preece, D., Nieminen, T. A., Heap, L. A., Scott, E. K.,
Rubinsztein-Dunlop,
H. (2015). Scattering of Sculpted Light in Intact Brain Tissue, with Implications for Optogenetics.
Sci Rep, 5, 11501. DOI:
10.1038/srep11501.
[64] Li, Z., Zheng, Y., Diao, X., Li, R., Sun, N., Xu, Y., et al. (2023). Robust and Adjustable Dynamic Scattering Compensation for High-precision Deep Tissue Optogenetics.
Commun Biol, 6, 128. DOI:
10.1038/s42003-023-04487-w.
[65] Yona, G., Meitav, N., Kahn, I., Shoham, S. (2016). Realistic Numerical and Analytical Modeling of Light Scattering in Brain Tissue for Optogenetic Applications (1,2,3). ENeuro, 3(1), ENEURO.0059-15.2015. DOI: 10.1523/ENEURO.0059-15.2015.
[66] Lehtinen, K., Nokia, M. S., Takala, H. (2022). Red Light Optogenetics in Neuroscience. Front Cell Neurosci, 15, 778900. DOI: 10.3389/fncel.2021.778900.
[67] Zhang, F., Vierock, J., Yizhar, O., Fenno, L. E., Tsunoda, S., Kianianmomeni, A., et al. (2011).
The Microbial Opsin Family of Optogenetic Tools.
Cell, 147(7), 1446-57.
[68] Guru, A., Post, R. J., Ho, Y. Y., Warden, M. R. (2015). Making Sense of Optogenetics. Int J Neuropsychopharmacol, 18(11), pyv079. DOI: 10.1093/ijnp/pyv079.
[69] Rindner, D. J., Lur, G. (2023). Practical Considerations in an Era of Multicolor Optogenetics. Front Cell Neurosci, 17, 1160245. DOI: 10.3389/fncel.2023.1160245.
[70] Lin, J., Knutsen, P., Muller, A., Kleinfeld, K., Tsien, R. Y. (2013). ReaChR: A Red-shifted Variant of Channelrhodopsin Enables Deep Transcranial Optogenetic Excitation.
Nat Neurosci, 16, 1499–1508. DOI:
10.1038/nn.3502.
[71] Igarashi, H., Ikeda, K., Onimaru, H., Kaneko, R., Koizumi, K., Beppu, K., et al. (2018). Targeted Expression of Step-function Opsins in Transgenic Rats for Optogenetic Studies. Sci Rep, 8, 5435. DOI: 10.1038/s41598-018-23810-8.
[72] Gong, X., Mendoza-Halliday, D., Ting, J. T., Kaiser, T., Sun, X., Bastos, A. M., et al. (2020). An Ultra-Sensitive Step-function Opsin for Minimally Invasive Optogenetic Stimulation in Mice and Macaques. Neuron, 107(1), 197. DOI: 10.1016/j.neuron.2020.06.018.
[73] Berndt, A., Lee, S. Y., Ramakrishnan, C., Deisseroth, K. (2014). Structure-Guided Transformation of Channelrhodopsin into a Light-Activated Chloride Channel. Science, 344(6182), 420–424. DOI: 10.1126/science.1252367.
[74] Zhang, F., Gradinaru, V., Adamantidis, A. R., Durand, R., Airan, R. D., Lecea, L. D., et al. (2010). Optogenetic Interrogation of Neural Circuits: Technology for Probing Mammalian Brain Structures. Nat Protoc, 5, 439–456. DOI: 10.1038/nprot.2009.226.
[75] Cardin, J. A., Carlen, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., et al. (2010). Targeted Optogenetic Stimulation and Recording of Neurons In Vivo Using Cell-type-specific Expression of Channelrhodopsin-2. Nat Protoc, 5, 247–254. DOI: 10.1038/nprot.2009.228.
[76] Fenno, L., Yizhar, O., Deisseroth, K. (2011). The Development and Application of Optogenetics. Annu Rev Neurosci, 34, 389-412. DOI: 10.1146/annurev-neuro-061010-113817.
[77] Packer, A. M., Roska, B., Hausser, M. (2013). Targeting Neurons and Photons for Optogenetics. Nat Neurosci, 16, 805–815. DOI: 10.1038/nn.3427.
[78] Heiney, S. A., Kim, J., Augustine, G. J., Medina, J. F. (2014). Precise Control of Movement Kinematics by Optogenetic Inhibition of Purkinje cell activity. J Neurosci, 34(6), 2321–30. DOI: 10.1523/JNEUROSCI.4547-13.2014.
[79] Liu, X., Ramirez, S., Pang, P. T., Puryear, C. B., Govindarajan, A., Deisseroth, K., et al. (2012). Optogenetic Stimulation of a Hippocampal Engram Activates Fear Memory Recall. Nature, 484, 381–385. DOI: 10.1038/nature11028.
[80] Prakash, R., Yizhar, O., Grewe, B., Ramakrishnan, C., Wang, N., Goshen, I., et al. (2012). Two-photon Optogenetic Toolbox for Fast Inhibition, Excitation and Bistable Modulation. Nat Methods, 9(12), 1171–9. DOI: 10.1038/nmeth.2215.
[81] Papagiakoumou, E., Anselmi, F., Begue, A., De Sars, V., Gluckstad, J., Isacoff, E. Y., et al. (2010). Scanless Two-photon Excitation of Channelrhodopsin-2. Nat Methods, 7(10), 848–54. DOI: 10.1038/nmeth.1505.
[82] Papagiakoumou, E. (2013). Optical Developments for Optogenetics. Biol Cell, 105(10), 443-464. DOI: 10.1111/boc.201200087.
[83] Yang, S. J., Allen, W. E., Kauvar, I., Andalman, A. S., Young, N. P., Kim, C. K., et al. (2015). Extended Field-of-view and Increased-signal 3D Holographic Illumination with Time-division Multiplexing. Opt Express, 23(25), 32573–32581. DOI: 10.1364/OE.23.032573.
[84] Katz, L. C., Dalva, M. B. (1994). Scanning Laser Photostimulation: A New Approach for Analyzing Brain Circuits. J Neurosci Methods, 54(2), 205-18. DOI: 10.1016/0165-0270(94)90194-5.
[85] Ronzitti, E., Emiliani, V., Papagiakoumou, E. (2018). Methods for Three-Dimensional All-Optical Manipulation of Neural Circuits. Front Cell Neurosci, 12, 469. DOI: 10.3389/fncel.2018.00469.
[86] Ikrar, T., Olivas, N. D., Shi, Y., Xu, X. (2011). Mapping Inhibitory Neuronal Circuits by Laser Scanning Photostimulation. J Vis Exp, 56, 3109. DOI: 10.3791/3109.
[87] Lillis, K. P., Eng, A., White, J. A., Mertz, J. (2008). Two-photon Imaging of Spatially Extended Neuronal Network Dynamics with High Temporal Resolution. J Neurosci Methods, 172(2), 178–84. DOI: 10.1016/j.jneumeth.2008.04.024.
[88] Salomé, R., Kremer, Y., Dieudonné, S., Léger, J. F., Krichevsky, O., Wyart, C., et al. (2006). Ultrafast Random-access Scanning in Two-photon Microscopy Using Acousto-optic Deflectors. J Neurosci Methods, 154, 161–74. DOI: 10.1016/j.jneumeth.2005.12.010.
[89] Petreanu, L., Mao, T., Sternson, S. M., Svoboda, K. (2009). The Subcellular Organization of Neocortical Excitatory Connections. Nature, 457(7233), 1142–5. DOI: 10.1038/nature07709.
[90] Wang, H., Peca, J., Matsuzaki, M., Matsuzaki, K., Noguchi, J., Qiu, L., et al. (2007). High-speed Mapping of Synaptic Connectivity Using Photostimulation in Channelrhodopsin-2 Transgenic Mice. Proc Natl Acad Sci, 104(19), 8143–8. DOI: 10.1073/pnas.0700384104.
[91] Ricci, P., Sancataldo, G., Gavryusev, V., Pavone, F. S., Saggau, P., Duocastella, M. (2024). Acousto-optic Deflectors in Experimental Neuroscience: Overview of Theory and Applications. J Phys Photonics, 6, 022001. DOI: 10.1088/2515-7647/ad2e0d.
[92] Bullen, A., Patel, S. S., Saggau, P. (1997). High-speed, Random-access Fluorescence Microscopy: I. High-resolution Optical Recording with Voltage-sensitive Dyes and Ion Indicators.
Biophys J, 73(1), 477–491. DOI:
10.1016/S0006-3495(97)78086-X.
[93] Losavio, B. E., Iyer, V., Saggau, P. (2009). Two-photon Microscope for Multisite Microphotolysis of Caged Neurotransmitters in Acute Brain Slices,
J Biomed Opt, 14(6), 64033. DOI:
10.1117/1.3275468.
[94] Shoham, S., O’Connor, D. H., Sarkisov, D. V., Wang, S. S-H. (2005). Rapid Neurotransmitter Uncaging in Spatially Defined Patterns. Nat Methods, 2, 837–843. DOI: 10.1038/nmeth793.
[95] Otsu, Y., Bormuth, V., Wong, J., Mathieu, B., Dugué, G. P., Feltz, A., et al. (2008). Optical Monitoring of Neuronal Activity at High Frame Rate with a Digital Random-access Multiphoton (RAMP) Microscope. J Neurosci Methods, 173(2), 259–70. DOI: 10.1016/j.jneumeth.2008.06.015.
[96] Lin, J. Y., Lin, M. Z., Steinbach, P., Tsien, R. Y. (2009). Characterization of Engineered Channelrhodopsin Variants with Improved Properties and Kinetics. Biophys J, 96(5), 1803–14. DOI: 10.1016/j.bpj.2008.11.034.
[97] Wang, K., Liu, Y., Li, Y., Guo, Y., Song, P., Zhang, X., et al. (2011). Precise Spatiotemporal Control of Optogenetic Activation Using an Acousto-optic Device. PLoS One, 6(12), e28468. DOI: 10.1371/journal.pone.0028468.
[98]
Wang, K.,
Gong, J.,
Wang, Q.,
Li, H.,
Cheng, Q.,
Liu, Y., et al. (2014). Parallel Pathways Convey Olfactory Information with Opposite Polarities in Drosophila.
Proc Natl Acad Sci, 111(8), 3164–9. DOI:
10.1073/pnas.1317911111.
[99] Katona, G., Szalay, G., Maák, P., Kaszás, A., Veress, M., Hillier, D., et al. (2012). Fast Two-photon in Vivo Imaging with Three-dimensional Random-access Scanning in Large Tissue Volumes. Nat Methods, 9(2), 201–8. DOI: 10.1038/nmeth.1851.
[100] Szalay, G., Judák, L., Katona, G., Ócsai, K., Juhász, G., Veress, M., et al. (2016). Fast 3D Imaging of Spine, Dendritic, and Neuronal Assemblies in Behaving Animals. Neuron, 92(4), 723–738. DOI: 10.1016/j.neuron.2016.10.002.
[101] Nadella, K. M., Roš, H., Baragli, C., Griffiths, V. A., Konstantinou, G., Koimtzis, T., et al. (2016). Random Access Scanning Microscopy for 3D Imaging in Awake Behaving Animals. Nat Methods, 13(12), 1001–1004. DOI: 10.1038/nmeth.4033.
[102] Zhang, Z., You, Z., Chu, D. (2014). Fundamentals of Phase-only Liquid Crystal on Silicon (LCOS) Devices.
Light Sci Appl, 3, e213.
DOI: 10.1038/lsa.2014.94.
[103] Márquez, A., Lizana, Á. (2019). Liquid Crystal on Silicon Devices: Modeling and Advanced Spatial Light Modulation Applications.
Appl Sci, 9(15), 3049. DOI:
10.3390/app9153049.
[104] Bovetti, S., Fellin, T. (2015). Optical Dissection of Brain Circuits with Patterned Illumination through the Phase Modulation of Light. J Neurosci Methods, 241, 66-77. DOI: 10.1016/j.jneumeth.2014.12.002.
[105] Lorca-Cámara, A., Blot, F. G. C., Accanto, N. (2024). Recent Advances in Light Patterned Optogenetic Photostimulation in Freely Moving Mice. Neurophotonics, 11(Suppl 1): S11508. DOI: 10.1117/1. NPh.11. S1.S11508.
[106] Turtaev, S., Leite, I. T., Mitchell, K. J., Padgett, M. J., Phillips, D. B., Čižmár, T. (2017). Comparison of Nematic Liquid-crystal and DMD Based Spatial Light Modulation in Complex Photonics. Opt Express, 25(24), 29874-29884. DOI: 10.1364/OE.25.029874.
[107] Yang, Y. Q., Forbes, A., Cao, L. C. (2023). A Review of Liquid Crystal Spatial Light Modulators: Devices and Applications.
Opto-Electron Sci, 2(8), 230026. DOI:
10.29026/oes.2023.230026
[108] Pégard, N. C., Mardinly, A. R., Oldenburg, I. A.,
Sridharan, S.,
Waller, L.,
Adesnik, H. (2017). Three-dimensional Scanless Holographic Optogenetics with Temporal Focusing (3D-SHOT).
Nat Commun, 8, 1228. DOI:
10.1038/s41467-017-01031-3.
[109]
Aghayee, S., Weikert, M.,
Alvarez, P.,
Frank, G. A. (2021). High Fidelity Spatial Light Modulator Configuration for Photo-Stimulation. Front Phys Sec Optics and
Photonics, 9, 2021. DOI:
10.3389/fphy.2021.587112.
[110] Introduction to Digital Micromirror Device (DMD) Technology, DMD 101. (2008). Application Report. Texas: Texas Instruments Inc.
[111] Dudley D, Duncan W M, Slaughter J. (2003). Emerging Digital Micromirror Device (DMD) Applications. Proc SPIE MOEMS Display and Imaging Systems, 4985. DOI: 10.1117/12.480761.
[112] Zhuang, Z., Ho, H. P. (2020). Application of Digital Micromirror Devices (DMD) in Biomedical Instruments. Journal of Innovative Optical Health Sciences,13(6), 2030011. DOI: 10.1142/S1793545820300116.
[113] Arens-Arad, T., Farah, N., Ben-Yaish, S.,
Zlotnik, A.,
Zalevsky, Z.,
Mandel, Y. (2016). Head Mounted DMD Based Projection System for Natural and Prosthetic Visual Stimulation in Freely Moving Rats.
Sci Rep, 6, 34873. DOI:
10.1038/srep34873.
[114] Bhatia, A., Moza, S., Bhalla, U. S. (2021). Patterned Optogenetic Stimulation Using a DMD Projector. Methods Mol Biol, 2191, 173-188. DOI: 10.1007/978-1-0716-0830-2_11.
[115] Zhu, P., Fajardo, O., Shum, J., Zhang Schärer, Y. P., Friedrich, R. W. (2012). High-resolution Optical Control of Spatiotemporal Neuronal Activity Patterns in Zebrafish Using a Digital Micromirror Device. Nat Protoc, 7(7), 1410-25. DOI: 10.1038/nprot.2012.072.
[116] Allen, J. (2017). Application of Patterned Illumination Using a DMD for Optogenetic Control of Signaling. Nat Methods, 14, 1114. DOI: 10.1038/nmeth.f.402.
[117] Popoff, S. M., Bromberg, Y., Matthès, M. W., Gutiérrez-Cuevas, R. (2024). A Practical Guide to Digital Micro-mirror Devices (DMDs) for Wavefront Shaping. J Phys Photonics, 6, 043001. DOI: 10.1088/2515-7647/ad6dc0.
[118] Bansal, V., Saggau, P. Digital Micromirror Devices: Principles and Applications in Imaging. (2013). Cold Spring Harb Protoc, 2013(5), 404-11. DOI: 10.1101/pdb. top074302.
[119] Schmieder, F., Klapper, S. D., Koukourakis, N., Busskamp, V., Czarske, J. W. (2018). Optogenetic Stimulation of Human Neural Networks Using Fast Ferroelectric Spatial Light Modulator—Based Holographic Illumination.
Appl. Sci, 8(7), 1180. DOI:
10.3390/app8071180.
[120] Fu, T., Zhang, J., Sun, R., Huang, Y., Xu, W., Yang, S., et al. (2024). Optical Neural Networks: Progress and Challenges. Light Sci Appl, 13(1), 263.
DOI: 10.1038/s41377-024-01590-3.
[121] Sakai, S., Ueno, K., Ishizuka, T., Yawo, H. (2013). Parallel and Patterned Optogenetic Manipulation of Neurons in the Brain Slice Using a DMD-based Projector. Neurosci Res, 75(1), 59-64. DOI: 10.1016/j.neures.2012.03.009.
[122] Jerome, J., Foehring, R. C., Armstrong, W. E., Spain, W. J., Heck, D. H. (2011). Parallel Optical Control of Spatiotemporal Neuronal Spike Activity Using High-speed Digital Light Processing. Front Syst Neurosci, 5, 70. DOI: 10.3389/fnsys.2011.00070.
[123] Xue, Y., Waller, L., Adesnik, H., Pégard, N. (2022). Three-dimensional Multi-site Random Access Photostimulation (3D-MAP). Elife, 11, e73266. DOI: 10.7554/eLife.73266.
[124] Zhang, F., Aravanis, A. M., Adamantidis, A., de Lecea, L., Deisseroth, K. (2007). Circuit-breakers: Optical Technologies for Probing Neural Signals and Systems. Nat Rev Neurosci, 8, 577–581. DOI: 10.1038/nrn2192.
[125] Aravanis, A. M., Wang, L. P., Zhang, F., Meltzer, L. A., Mogri, M. Z., Schneider, M. B., et al. (2007). An Optical Neural Interface: In Vivo Control of Rodent Motor Cortex with Integrated Fiberoptic and Optogenetic Technology. J Neural Eng, 4(3), S143-56. DOI: 10.1088/1741-2560/4/3/S02.
[126] Warden, M. R., Cardin, J. A., Deisseroth, K. (2014). Optical Neural Interfaces. Annu Rev Biomed Eng, 16, 103-29. DOI: 10.1146/annurev-bioeng-071813-104733.
[127] Royer, S., Zemelman, B. V., Barbic, M., Losonczy, A., Buzsáki, G., Magee, J. C. (2010). Multi-array Silicon Probes with Integrated Optical Fibers: Light-assisted Perturbation and Recording of Local Neural Circuits in the Behaving Animal. Eur J Neurosci, 31(12), 2279-91. DOI: 10.1111/j.1460-9568.2010.07250. x.
[128] Zhang, J., Laiwalla, F., Kim, J. A.,
Urabe, H.,
Wagenen, R. V.,
Song, Y. K., et al. (2009). A Microelectrode Array Incorporating an Optical Waveguide Device for Stimulation and Spatiotemporal Electrical Recording of Neural Activity. Conference proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2046-2049. DOI: 10.1109/IEMBS.2009.5333947.
[129] Pisanello, F., Sileo, L., Oldenburg, I. A., Pisanello, M., Martiradonna, L., Assad, J. A., et al. (2014). Multipoint-emitting Optical Fibers for Spatially Addressable In Vivo Optogenetics. Neuron, 82(6), 1245-1254. DOI: 10.1016/j.neuron.2014.04.041.
[130] Schwaerzle, M., Elmlinger, P., Paul, O., Ruther, P. (2015). Miniaturized 3×3 Optical Fiber Array for Optogenetics with Integrated 460 nm Light Sources and Flexible Electrical Interconnection. 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, 162-165, DOI: 10.1109/MEMSYS.2015.7050911.
[131] Kim, E. G. R., Tu, H., Luo, H.,
Liu, B.,
Bao, S.,
Zhang, J., et al. (2015). 3D Silicon Neural Probe with Integrated Optical Fibers for Optogenetic Modulation.
Lab Chip, 15(14), 2939-2949.
DOI: 10.1039/C4LC01472C.
[132] Vu, M. T., Brown, E. H., Wen, M. J., Noggle, C. A., Zhang, Z., Monk, K. J., et al. (2024). Targeted Micro-fiber Arrays for Measuring and Manipulating Localized Multi-scale Neural Dynamics over Large, Deep Brain Volumes during Behavior. Neuron, 112(6), 909-923.e9. DOI: 10.1016/j.neuron.2023.12.011.
[133] Jiang, S., Patel, D. C., Kim, J., Yang, S., Mills, W. A. 3
rd., Zhang, Y., et al. (2020). Spatially Expandable Fiber-based Probes as a Multifunctional Deep Brain Interface.
Nat Commun, 11(1), 6115. DOI:
10.1038/s41467-020-19946-9.
[134] Cho, I. J., Baac, H. W., Yoon, E. (2010). A 16-site Neural Probe Integrated with a Waveguide for Optical Stimulation. IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Hong Kong, China, 995-998, DOI: 10.1109/MEMSYS.2010.5442376.
[135] Schwaerzle, M., Seidl, K., Schwarz, U. T., Paul, O., Ruther, P. (2013). Ultracompact Optrode with Integrated Laser Diode Chips and SU-8 Waveguides for Optogenetic Applications. IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, 1029-1032, DOI: 10.1109/MEMSYS.2013.6474424.
[136] Zorzos, A. N., Boyden, E. S., Fonstad, C. G. (2010). Multiwaveguide Implantable Probe for Light Delivery to Sets of Distributed Brain Targets. Opt Lett, 35(24), 4133–5. DOI: 10.1364/OL.35.004133.
[137] Zorzos, A. N., Scholvin, J., Boyden, E. S., Fonstad, C. G. (2012). Three-dimensional Multiwaveguide Probe Array for Light Delivery to Distributed Brain Circuits. Opt Lett, 37(23), 4841–3. DOI: 10.1364/OL.37.004841.
[138] Abaya, T. V. F., Diwekar, M., Blair, S., Tathireddy, P., Rieth, L., Solzbacher, F. (2014). Deep-tissue Light Delivery via Optrode Arrays. J Biomed Opt, 19(1), 015006-015006. DOI: 10.1117/1.JBO.19.1.015006.
[139] Abaya, T. V. F., Blair, S., Tathireddy, P., Rieth, L., Solzbacher, F. (2012). A 3D Glass Optrode Array for Optical Neural Stimulation. Biomed Opt Express, 3(12), 3087-3104. DOI: 10.1364/BOE.3.003087.
[140] Kwon, K. Y., Lee, H. M., Ghovanloo, M., Weber, A., Li, W. (2015). Design, Fabrication, and Packaging of an Integrated, Wirelessly-powered Optrode Array for Optogenetics Application. Front Syst Neurosci, 9(69). DOI: 10.3389/fnsys.2015.00069.
[141] Lee, J., Ozden, I., Song, Y. K., Nurmikko, A. V. (2015). Transparent Intracortical Microprobe Array for Simultaneous Spatiotemporal Optical Stimulation and Multichannel Electrical Recording. Nat Methods, 12(12), 1157–1162. DOI: 10.1038/nmeth.3620.
[142] Nizamoglu, S., Gather, M. C., Humar, M., Choi, M., Kim, S., Kim, K. S., et al. (2016). Bioabsorbable Polymer Optical Waveguides for Deep-tissue Photomedicine. Nat Commun, 7, 10374. DOI: 10.1038/ncomms10374.
[143] Mahmoudi, P., Veladi, H., Ghaderi Pakdel, F., Frounchi, J. (2019). Low-cost Optical Splitter for Neural Stimulations Using Off-the-shelf Ultraviolet Adhesives. Journal of Micro/Nanolithography, MEMS, and MOEMS, 18(01). DOI: 10.1117/1.JMM.18.1.015502.
[144] Reddy, J. W., Lassiter, M., Chamanzar, M. (2020). Parylene Photonics: A Flexible, Broadband Optical Waveguide Platform with Integrated Micromirrors for Biointerfaces. Microsyst Nanoeng, 6, 85. DOI: 10.1038/s41378-020-00186-2.
[145] Mohanty, A., Li, Q., Tadayon, M. A., Roberts, S. P., Bhatt, G. R., Shim, E., et al. (2020). Reconfigurable Nanophotonic Silicon Probes for Sub-millisecond Deep-brain Optical Stimulation. Nat Biomed Eng, 4(2), 223–231. DOI:10.1038/s41551-020-0516-y.
[146] Zhou, Y., Gu, C., Liang, J., Zhang, B., Yang, H., Zhou, Z., et al. (2022). A Silk-based Self-adaptive Flexible Opto-Electro Neural Probe. Microsyst Nanoeng, 8, 118. DOI:10.1038/s41378-022-00461-4.
[147] Chen, Z., Li, X., Tang, Y., Huang, Z., Huang, J., Liu, H., et al. (2024). Implantation-assistance-free Flexible Waveguide Probe for Optogenetic Stimulation.
Cell Reports Physical Science, 5(10). DOI:
10.1016/j.xcrp.2024.102217.
[148] McAlinden, N., Massoubre, D., Richardson, E., Gu, E., Sakata, S., Dawson, M. D., et al. (2013). Thermal and Optical Characterization of Micro-LED Probes for In Vivo Optogenetic Neural Stimulation. Opt Lett. 38(6), 992-4. DOI: 10.1364/OL.38.000992.
[149] McAlinden, N., Gu, E., Dawson, M. D., Sakata, S., Mathieson, K. (2015). Optogenetic Activation of Neocortical Neurons In Vivo with a Sapphire-based Micro-scale LED Probe. Front Neural Circuits, 9, 25. DOI: 10.3389/fncir.2015.00025.
[150] Wu, F., Stark, E., Ku, P. C., Wise, K. D., Buzsáki, G., Yoon, E. (2015). Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals. Neuron, 88(6), 1136-1148. DOI: 10.1016/j.neuron.2015.10.032.
[151] Fan, B., Kwon, K. Y., Rechenberg, R., Becker, M. F., Weber, A. J., Li, W. (2016). A Hybrid Neural Interface Optrode with a Polycrystalline Diamond Heat Spreader for Optogenetics. Technology, 4(1), 15-22. DOI: 10.1142/S2339547816400021.
[152] Klein, E., Gossler, C., Paul, O., Ruther, P. (2018). High-density µLED-based Optical Cochlear Implant with Improved Thermomechanical Behavior. Front Neurosci, 12(659). DOI: 10.3389/fnins.2018.00659.
[153] Noh, K. N., Park, S. I., Qazi, R., Zou, Z., Mickle, A. D., Grajales-Reyes, J. G., et al. (2018). Miniaturized, Battery-free Optofluidic Systems with Potential for Wireless Pharmacology and Optogenetics. Small, 14(4). DOI: 10.1002/smll.201702479.
[154] Scharf, R., Reiche, C., McAlinden, N., Cheng, Y., Xie, E., Sharma, R., et al. (2018). A Compact Integrated Device for Spatially-selective Optogenetic Neural Stimulation Based on the Utah Optrode Array.
Optogenetics and Optical Manipulation, 10482. DOI:
10.1117/12.2299296.
[155] Reddy, J. W., Kimukin, I., Stewart, L. T., Ahmed, Z., Barth, A. L., Towe, E., et al. (2019). High Density, Double-Sided, Flexible Optoelectronic Neural Probes with Embedded µLEDs. Front Neurosci, 13, 745. DOI: 10.3389/fnins.2019.0074.
[156] Nazempour, R., Zhang, Q., Fu, R., Sheng, X. (2018). Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine. Materials (Basel), 11(8), 1283. DOI: 10.3390/ma11081283.
[157] Chernov, M. M., Friedman, R. M., Roe, A. W. (2021). Fiberoptic Array for Multiple Channel Infrared Neural Stimulation of the Brain. Neurophotonics, 8(2), 025005. DOI: 10.1117/1. NPh.8.2.025005.
[158] Wang, J., Dong, J. (2020). Optical Waveguides and Integrated Optical Devices for Medical Diagnosis, Health Monitoring and Light Therapies. Sensors (Basel), 20(14), 3981. DOI: 10.3390/s20143981.
[159]
Duma, V. F. (2024). Analyses and Optimizations of Galvanometer Laser Scanning. Proc. SPIE 13200, Electro-Optical and Infrared Systems:
Technology and Applications XXI, 132000O. DOI: 10.1117/12.3026241.
[160] Wang, F., Yuan, Y., Sun, Q., Dai, M., Ai, L., Lu, F. (2020). Design and Implementation of the Galvanometer Scanning System for Reflectance Confocal and Stimulated Raman Scattering Microscopy. Chin Opt Lett, 18, 121703.
[161] Kobiela, K., Jedynak, M., Harmatys, W., Krawczyk, M., Sładek, J. A. (2021). Assessment of Laser Galvanometer Scanning System Accuracy Using Ball-Bar Standard. Applied Sciences, 11(19), 8929. DOI: 10.3390/app11198929.
[162] Alp, A., Bursy, M., Wallaschek, J. (2019). High-Resolution Laser Scanning Systems with Acousto-Optic Deflectors and Optimised Optics Design. Lux junior. DOI: 10.22032/dbt.39620.
[163] Franz, D., Häfner, T., Kunz, T. et al. (2022). Characterization of a Hybrid Scanning System Comprising Acousto-optical Deflectors and Galvanometer Scanners. Appl Phys B, 128, 55. DOI: 10.1007/s00340-022-07782-2.
[164]
Jr, W. P. B.,
Lei, L. A. (2013). Advances in Liquid Crystal on Silicon (LCOS) Spatial Light Modulator Technology", Proc. SPIE 8736, Display Technologies and Applications for Defense,
Security, and Avionics VII, 87360A. DOI: 10.1117/12.2015973.
[165]
Hohle, C.,
Döring, C., Friedrichs, M.,
Gehner, A., Rudloff, D., Schulze, M., et al. (2021). Challenges of Monolithic MEMS-on-CMOS Integration for Spatial Light Modulators. Proc. SPIE 11697,
MOEMS and Miniaturized Systems XX, 116970V. DOI:
10.1117/12.2583036.
[166] Tsakas, A., Tselios, C., Ampeliotis, D., Politi, C., Alexandropoulos, D. (2021). Review of Optical Fiber Technologies for Optogenetics. Results in Optics, 5, 100168.
[167] Touriño, C., Eban-Rothschild, A., de Lecea, L. (2013). Optogenetics in Psychiatric Diseases. Curr Opin Neurobiol, 23(3), 430-5. DOI: 10.1016/j.conb.2013.03.007.
[168] Zhang, Q., Li, T., Xu, M. Islam, B., Wang, J. (2024). Application of Optogenetics in Neurodegenerative Diseases. Cell Mol Neurobiol, 44, 57. DOI: 10.1007/s10571-024-01486-1.
[169] Henriksen, B. S., Marc, R. E., Bernstein, P. S. (2014). Optogenetics for Retinal Disorders. J Ophthalmic Vis Res, 9(3), 374-82. DOI: 10.4103/2008-322X.143379.
[170] Barros, B. J., Cunha, J. P. S. (2024). Neurophotonics: A comprehensive Review, Current Challenges and Future Trends. Front Neurosci, 18, 1382341. DOI: 10.3389/fnins.2024.1382341.
[171] Gotowiec, M. (2021). Optogenetics and its Influence on the Clinical Neurosciences. Cambridge Medicine Journal, 1-6. DOI: 10.7244/cmj.2020.12.002.
[172] White, M., & Whittaker, R. G. (2022). Post-Trial Considerations for an Early Phase Optogenetic Trial in the Human Brain. Open Access Journal of Clinical Trials, 14, 1–9. DOI: 10.2147/OAJCT.S345482.