نوع مقاله : پژوهشی

نویسنده

عضو هیات علمی دانشگاه آزاد واحد ارس

چکیده

فناوری پلاسما در بسیاری از کشورها در زمینه‌های مختلفی مانند تولید ازن، تصفیه سطح، اصلاح سطح، پزشکی و غیره استفاده می‌شود. پلاسمای تولیدشده با امواجی مانند مایکروویو، یک فناوری امیدوارکننده و جالب برای ویژگی‌های منحصر به فرد و همه کاره آن است. این ویژگی‌های پلاسمای مایکروویو یک فناوری جایگزین در مقایسه با راکتورهای شیمیایی حرارتی سنتی به شرط رفع چالش‌های فنی خاص آن است. در این مطالعه عددی، خواص پلاسمای مایکروویو با فرکانس 45/2 گیگاهرتز و گاز آرگون در فشار اتمسفر بررسی شد. با تغییر توان ورودی دستگاه در محدوده 10 وات تا 20 وات در حالت مغناطیسی و مد (TM)، پروفایل‌های مقایسه‌ای چگالی الکترون، دمای الکترون، میدان الکتریکی نشان داده می‌شود. نتایج شبیه‌سازی، تولید المان‌های شیمیایی در پلاسمای مایکروویو را نشان می‌دهد. الکترون‌های پرانرژی و چگالی الکترون به‌عنوان عوامل اصلی مؤثر بر خواص پلاسمای مایکروویو در نظر گرفته شده‌اند.

کلیدواژه‌ها

[1] N. Dadashzadeh and E. Poorreza, Comparative analysis and simulation of a dielectric discharge barrier reactor using the finite element method, Quarterly Journal of Optoelectronic 6 (3), 7-16 (2024). https://doi.org/10.30473/jphys.2024.69563.1172
[2] E. Poorreza and N. Dadashzadeh Gargari, Computational Study of an Inductively Coupled Plasma with Different Copper Coil Designs and Dielectric Thickness Russian Journal of Physical Chemistry A 98, pp. 249–256. (2024). https://doi.org/10.1134/S0036024424050224
[3] E. Poorreza and N. Dadashzadeh, Modeling and Finite element analysis of argon gas plasma produced by inductively coupled plasma method with variable input power, coil position and dielectric thickness, Quarterly Journal of Optoelectronic 6 (1), 33-40 (2023). https://doi.org/10.1134/S1990793123030235.
[4] E. Poorreza and N. Dadashzadeh Gargari, The Investigating and Simulating the Corona Phenomenon in The Power Transmission Lines of Power Networks Using the Finite Element Method, Majlesi Journal of Telecommunication Devices. Vol. 12, No. 1, pp.49-52, (2023). DOI: 10.30486/mjtd.2023.1981758.1030
[5] M.S. Kim, H.Y. Kim, H.K. Shin, H.C. Kwon, J.Y. Sim, J.K. Lee, Comparative study between atmospheric microwave and low-frequency plasmas: Production efficiency of reactive species and their effectiveness, Japanese Journal of Applied Physics, 53(5S1) (2014) 05FR02.
[6] M. Ong, S. Nomanbhay, F. Kusumo, P. Show, Application of microwave plasma technology to convert carbon dioxide (CO2) into high value products: A review, Journal of Cleaner Production, 336 (2022) 130447.
[7] V. Shumova, D. Polyakov, L. Vasilyak, The Chemi-ionization Rate Constant of Metastable Neon Atoms in a Glow Discharge at Cryogenic Temperature, Russian Journal of Physical Chemistry B, 15 (2021) 691-695.
[8] E. Poorreza and N. Dadashzadeh Gargari, Modeling and simulation of a microwave-assisted plasma with different input power for plasma-based applications, Russ. J. Phys. Chem. B 17 719–724 (2023). https://doi.org/10.1134/S1990793123030235.
 [9] B. Ramamurthi, D.J. Economou, I.D. Kaganovich, Effect of electron energy distribution function on power deposition and plasma density in an inductively coupled discharge at very low pressures, Plasma sources science and technology, 12(3) (2003) 302.
[10] P.L. Ventzek, R.J. Hoekstra, M.J. Kushner, Two‐dimensional modeling of high plasma density inductively coupled sources for materials processing, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 12(1) (1994) 461-477.
[11] R. Bussiahn, R. Gesche, S. Kühn, K. Weltmann, Integrated microwave atmospheric plasma source (IMAPlaS): thermal and spectroscopic properties and antimicrobial effect on B. atrophaeus spores, Plasma Sources Science and Technology, 21(6) (2012) 065011.
[12] Y.H. Na, G. Park, E.H. Choi, H.S. Uhm, Effects of the physical parameters of a microwave plasma jet on the inactivation of fungal spores, Thin Solid Films, 547 (2013) 125-131.
[13] H.S. Uhm, Y.C. Hong, Various microplasma jets and their sterilization of microbes, Thin Solid Films, 519(20) (2011) 6974-6980.
[14] Noushin Dadashzadeh. Optimization of Electricity Consumption using Dielectric Barrier Discharge Method (DBD), Majlesi Journal of Electrical Engineering 17 (1), 117-121 (2023) https://doi.org/10.30486/mjee.2023.1975011.1024
[15] S.K. Dubey, S. Parab, A. Alexander, M. Agrawal, V.P.K. Achalla, U.N. Pal, M.M. Pandey, P. Kesharwani, Cold atmospheric plasma therapy in wound healing, Process Biochemistry, 112 (2022) 112-123.
[16] J. Muñoz, J. Bravo, M. Calzada, Aluminum metal surface cleaning and activation by atmospheric-pressure remote plasma, Applied Surface Science, 407 (2017) 72-81.
[17] R. Kovacs, N. Bibinov, P. Awakowicz, H.E. Porteanu, S. Kühn, R. Gesche, An integrated atmospheric microwave plasma source, Plasma Processes and Polymers, 6(S1) (2009) S233-S236.
[18] J. Hnilica, J. Schäfer, R. Foest, L. Zajíčková, V. Kudrle, PECVD of nanostructured SiO2 in a modulated microwave plasma jet at atmospheric pressure, Journal of Physics D: Applied Physics, 46(33) (2013) 335202.
[19] T. Matsubayashi, H. Hidaka, H. Muguruma, Microwave-assisted atmospheric pressure plasma polymerization of hexamethyldisiloxane, Japanese Journal of Applied Physics, 55(7) (2016) 076201.
[20] A. Kilicaslan, O. Levasseur, V. Roy-Garofano, J. Profili, M. Moisan, C. Côté, A. Sarkissian, L. Stafford, Optical emission spectroscopy of microwave-plasmas at atmospheric pressure applied to the growth of organosilicon and organotitanium nanopowders, Journal of Applied Physics, 115(11) (2014) 113301.
[21] P. Vazquez-Quintal, J. Barrón-Zambrano, S. Medina-Peralta, Y. Moguel-Ordoñez, J. Nelson, D. Muñoz-Rodríguez, Elemental analysis of propolis tinctures by microwave plasma–atomic emission spectrometry (MP-AES), Analytical Letters, 56(14) (2023) 2249-2261.
[22] P.K. Baghel, Application of microwave in manufacturing technology: A review, Materials Today: Proceedings, (2023).
[23] T.U. Rahman, H. Roy, A. Fariha, A.Z. Shoronika, M.R. Al-Mamun, S.Z. Islam, M.S. Islam, H.M. Marwani, A. Islam, A.K. Alsukaibi, Progress in plasma-based doping semiconductor photocatalysts for efficient pollutant remediation and hydrogen generation, Separation and Purification Technology, (2023) 124141.
[24] A.A. Kiss, Distillation technology–still young and full of breakthrough opportunities, Journal of Chemical Technology & Biotechnology, 89(4) (2014) 479-498.
[25] E.D. Lavric, P. Woehl, Advanced-FlowTM glass reactors for seamless scale-up, Chemistry Today, 27(3) (2009) 45-48.
[26] F. Sohbatzadeh, H. Soltani, Time-dependent one-dimensional simulation of atmospheric dielectric barrier discharge in N2/O2/H2O using COMSOL Multiphysics, Journal of Theoretical and Applied Physics, 12(1) (2018) 53-63
[27] E. Poorreza and N. Dadashzadeh Gargari, Study of the Time Dependence and One Dimensional Simulation of a Dielectric Barrier Discharge Reactor Driven by Sinusoidal High-Frequency Voltage, Russ. J. Phys. Chem. B 17 (3) (2023). DOI:10.1134/S1990793123030107