[1] Evarestov, R. A., Kovalenko, A. V., & Bandura, A. V. (2020). First-principles study on stability, structural and electronic properties of monolayers and nanotubes based on pure Mo (W) S (Se) 2 and mixed (Janus) Mo (W) SSe dichalcogenides. Physica E: Low-dimensional Systems and Nanostructures, 115, 113681.
[2] Evarestov, R. A., Kovalenko, A. V., & Bandura, A. V. (2020). First-principles study on stability, structural and electronic properties of monolayers and nanotubes based on pure Mo (W) S (Se) 2 and mixed (Janus) Mo (W) SSe dichalcogenides. Physica E: Low-dimensional Systems and Nanostructures, 115, 113681.
[3] Kamaei, S., Saeidi, A., Jazaeri, F., Rassekh, A., Oliva, N., Cavalieri, M., ... & Ionescu, A. M. (2020). An Experimental Study on Mixed-Dimensional 1D-2D van der Waals Single-Walled Carbon Nanotube-WSe 2 Hetero-Junction. IEEE Electron Device Letters, 41(4), 645-648.
[4] Chen, F., Wang, J., Li, B., Yao, C., Bao, H., & Shi, Y. (2014). Nanocasting synthesis of ordered mesoporous crystalline WSe2 as anode material for Li-ion batteries. Materials Letters, 136, 191-194.
[5] Yu, X. Y., Hu, H., Wang, Y., Chen, H., & Lou, X. W. (2015). Ultrathin MoS2 nanosheets supported on N‐doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. AngewandteChemie, 127(25), 7503-7506.
[6] Kim, Y., Huang, J. L., & Lieber, C. M. (1991). Characterization of nanometer scale wear and oxidation of transition metal dichalcogenide lubricants by atomic force microscopy. Applied physics letters, 59(26), 3404-3406.
[7] Hoseinzadeh, T., Solaymani, S., Kulesza, S., Achour, A., Ghorannevis, Z., Ţălu, Ş., ... &Mozaffari, N. (2018). Microstructure, fractal geometry and dye-sensitized solar cells performance of CdS/TiO2 nanostructures. Journal of Electroanalytical Chemistry, 830, 80-87.
[8] Sinha, S. S., Yadgarov, L., Aliev, S. B., Feldman, Y., Pinkas, I., Chithaiah, P., ... & Tenne, R. (2021). MoS2 and WS2 nanotubes: Synthesis, structural elucidation, and optical characterization. The Journal of Physical Chemistry C, 125(11), 6324-6340.
[9] Achour, A., Arman, A., Islam, M., Zavarian, A. A., Basim Al-Zubaidi, A., &Szade, J. (2017). Synthesis and characterization of porous CaCO3 micro/nano-particles. The European Physical Journal Plus, 132(6), 267.
[10] Kong, D., Wang, H., Cha, J. J., Pasta, M., Koski, K. J., Yao, J., & Cui, Y. (2013). Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano letters, 13(3), 1341-1347.
[11] Roldan, R., López-Sancho, M. P., Guinea, F., Cappelluti, E., Silva-Guillén, J. A., &Ordejón, P. (2014). Momentum dependence of spin–orbit interaction effects in single-layer and multi-layer transition metal dichalcogenides. 2D Materials, 1(3), 034003.
[12] Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C. Y., ... & Wang, F. (2010). Emerging photoluminescence in monolayer MoS2. Nano letters, 10(4), 1271-1275.
[13] Kou, L., Frauenheim, T., & Chen, C. (2013). Nanoscale multilayer transition-metal dichalcogenide heterostructures: band gap modulation by interfacial strain and spontaneous polarization. The journal of physical chemistry letters, 4(10), 1730-1736.
[14] Wu, H. H., Meng, Q., Huang, H., Liu, C. T., & Wang, X. L. (2018). Tuning the indirect–direct band gap transition in the MoS 2− x Se x armchair nanotube by diameter modulation. Physical Chemistry Chemical Physics, 20(5), 3608-3613.
[15] Dong, J., Hu, H., Li, H., & Ouyang, G. (2021). Spontaneous flexoelectricity and band engineering in MS 2 (M= Mo, W) nanotubes. Physical Chemistry Chemical Physics, 23(36), 20574-20582.
[16] Durairasan, M., Karthik, P. S., Balaji, J., &Rajeshkanna, B. (2021). Enhanced visible light photocatalytic performance of WSe2/CNT hybrid photocatalysts that were synthesized by a facile hydrothermal route. Ionics, 27(5), 2151-2158.
[17] AYari, A., Boochani, A., &Rezaee, S. (2021). Electronic, optical, magneto-optical, and thermoelectric properties of the SrS graphene-like under Cr impurity. Chemical Physics, 551, 111355.
[18] Ghadri, A., Boochani, A., Hojabri, A., &Hajakbari, F. (2022). Electronic, optical and thermoelectric properties of WSe2–InN 2D interface: A DFT study. Solid State Communications, 354, 114889.
[19] Schwarz, K., Blaha, P., & Madsen, G. K. (2002). Electronic structure calculations of solids using the WIEN2k package for material sciences. Computer physics communications, 147(1-2), 71-76.
[20] Madsen, G. K., Blaha, P., Schwarz, K., Sjöstedt, E., &Nordström, L. (2001). Efficient linearization of the augmented plane-wave method. Physical Review B, 64(19), 195134.
[21] Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., &Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical review B, 46(11), 6671.
[22] Perdew, J. P., Burke, K., &Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865.
[23] Von Barth, U., & Hedin, L. (1972). A local exchange-correlation potential for the spin polarized case. i. Journal of Physics C: Solid State Physics, 5(13), 1629.
[24] Gulans, A., Kontur, S., Meisenbichler, C., Nabok, D., Pavone, P., Rigamonti, S., ... &Draxl, C. (2014). Exciting: a full-potential all-electron package implementing density-functional theory and many-body perturbation theory. Journal of Physics: Condensed Matter, 26(36), 363202.
[25] Nabok, D., Gulans, A., &Draxl, C. (2016). Accurate all-electron G 0 W 0 quasiparticle energies employing the full-potential augmented plane-wave method. Physical Review B, 94(3), 035118.
[26] Hedin, L. (1965). New method for calculating the one-particle Green's function with application to the electron-gas problem. Physical Review, 139(3A), A796.
[27] Runge, E., & Gross, E. K. (1984). Density-functional theory for time-dependent systems. Physical review letters, 52(12), 997.
[28] Horsley, S. A. R., Artoni, M., & La Rocca, G. C. (2015). Spatial Kramers–Kronig relations and the reflection of waves. Nature Photonics, 9(7), 436-439.
[29] Rezazadeh, H., Hantehzadeh, M., &Boochani, A. (2022). Surface effect on electronic, Magnetic and optical propertieS of ptcoBi Half-HeuSler: a dft Study. Archives of Metallurgy and Materials, 67(1), 155-166.
[30] Tizroespeli, F., Parhizgar, S. S., Beheshtian, J., &Boochani, A. (2021). Electronic, magnetic and optical properties of Fe-doped nano-BN sheet: DFT study. Indian Journal of Physics, 95, 823-831.