[1] Aghamohammadi, A., Ranjbarzadeh, R., Naiemi, F., Mogharrebi, M., Dorosti, S., & Bendechache, M. (2021). TPCNN: two-path convolutional neural network for tumor and liver segmentation in CT images using a novel encoding approach. Expert Systems with Applications, 183, 115406.
[2] Al-Saeed, Y., Gab-Allah, W. A., Soliman, H., Abulkhair, M. F., Shalash, W. M., & Elmogy, M. (2022). Efficient computer aided diagnosis system for hepatic tumors using computed tomography scans. CMC-Comput Mater Cont, 71 (3), 4871-94.
[3] Araújo, J. D. L., da Cruz, L. B., Ferreira, J. L., da Silva Neto, O. P., Silva, A. C., de Paiva, A. C., & Gattass, M. (2021). An automatic method for segmentation of liver lesions in computed tomography images using deep neural networks. Expert Systems with Applications, 180, 115064.
[4] Ayalew, Y. A., Fante, K. A., & Mohammed, M. A. (2021). Modified U-Net for liver cancer segmentation from computed tomography images with a new class balancing method. BMC Biomedical Engineering, 3, 1-13.
[5] Azer, S. A. (2019). Deep learning with convolutional neural networks for identification of liver masses and hepatocellular carcinoma: A systematic review. World journal of gastrointestinal oncology, 11 (12), 1218.
[6] Bruix, J., Han, K. H., Gores, G., Llovet, J. M., & Mazzaferro, V. (2015). Liver cancer: approaching a personalized care. Journal of hepatology, 62 (1), S144-S156.
[7] Cheng, L., Zhang, Z., Zuo, D., Zhu, W., Zhang, J., Zeng, Q., ... & Zhao, Y. (2018). Ultrasensitive detection of serum microRNA using branched DNA-based SERS platform combining simultaneous detection of α-fetoprotein for early diagnosis of liver cancer. ACS applied materials & interfaces, 10 (41), 34869-34877.
[8] Chlebus, G., Schenk, A., Moltz, J. H., van Ginneken, B., Hahn, H. K., & Meine, H. (2018). Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing. Scientific reports, 8 (1), 15497.
[9] Dong, X., Zhou, Y., Wang, L., Peng, J., Lou, Y., & Fan, Y. (2020). Liver cancer detection using hybridized fully convolutional neural network based on deep learning framework. IEEE Access, 8, 129889-129898.
[10] Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., & Greenspan, H. (2018, April). Synthetic data augmentation using GAN for improved liver lesion classification. In 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) (pp. 289-293). IEEE.
[11] Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., & Greenspan, H. (2018, April). Synthetic data augmentation using GAN for improved liver lesion classification. In 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) (pp. 289-293). IEEE.
[12] Ghoniem, R. M. (2020). A novel bio-inspired deep learning approach for liver cancer diagnosis. Information, 11 (2), 80.
[13] Hamm, C. A., Wang, C. J., Savic, L. J., Ferrante, M., Schobert, I., Schlachter, T., ... & Letzen, B. (2019). Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI. European radiology, 29, 3338-3347.
[14] Kakkar, P., Nagpal, S., & Nanda, N. (2018). Automatic liver segmentation in CT images using improvised techniques. In Smart Health: International Conference, ICSH 2018, Wuhan, China, July 1–3, 2018, Proceedings 6 (pp. 41-52). Springer International Publishing.
[15] Kavur, A. E., Kuncheva, L. I., & Selver, M. A. (2020). Basic ensembles of vanilla-style deep learning models improve liver segmentation from ct images. In Convolutional Neural Networks for Medical Image Processing Applications (pp. 52-74). CRC Press.
[16] Li, C., Tan, Y., Chen, W., Luo, X., Gao, Y., Jia, X., & Wang, Z. (2020, October). Attention unet++: A nested attention-aware u-net for liver ct image segmentation. In 2020 IEEE international conference on image processing (ICIP) (pp. 345-349). IEEE.
[17] Li, J., Wu, Y., Shen, N., Zhang, J., Chen, E., Sun, J., ... & Zhang, Y. (2020). A fully automatic computer-aided diagnosis system for hepatocellular carcinoma using convolutional neural networks. Biocybernetics and Biomedical Engineering, 40 (1), 238-248.
[18] Liu, S., Wang, M., Zheng, C., Zhong, Q., Shi, Y., & Han, X. (2020). Diagnostic value of serum glypican-3 alone and in combination with AFP as an aid in the diagnosis of liver cancer. Clinical biochemistry, 79, 54-60.
[19] Liu, Z., Suo, C., Mao, X., Jiang, Y., Jin, L., Zhang, T., & Chen, X. (2020). Global incidence trends in primary liver cancer by age at diagnosis, sex, region, and etiology, 1990‐2017. Cancer, 126 (10), 2267-2278.
[20] Meng, L., Zhang, Q., & Bu, S. (2021). Two-stage liver and tumor segmentation algorithm based on convolutional neural network. Diagnostics, 11 (10), 1806.
[21] Meng, L., Zhang, Q., & Bu, S. (2021). Two-stage liver and tumor segmentation algorithm based on convolutional neural network. Diagnostics, 11 (10), 1806.
[22] Naaqvi, Z., Akbar, S., Hassan, S. A., & Ain, Q. U. (2022, May). Detection of Liver Cancer through Computed Tomography Images using Deep Convolutional Neural Networks. In 2022 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2) (pp. 1-6). IEEE.
[23] Nakai, H., Fujimoto, K., Yamashita, R., Sato, T., Someya, Y., Taura, K., ... & Nakamoto, Y. (2021). Convolutional neural network for classifying primary liver cancer based on triple-phase CT and tumor marker information: a pilot study. Japanese Journal of Radiology, 39, 690-702.
[24] Nisa, M., Buzdar, S. A., Khan, K., & Ahmad, M. S. (2022). Deep Convolutional Neural Network Based Analysis of Liver Tissues Using Computed Tomography Images. Symmetry, 14 (2), 383.
[25] Peng, J., Kang, S., Ning, Z., Deng, H., Shen, J., Xu, Y., ... & Liu, L. (2020). Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging. European radiology, 30, 413-424.
[26] Rela, M., Suryakari, N. R., & Patil, R. R. (2022). A diagnosis system by U-net and deep neural network enabled with optimal feature selection for liver tumor detection using CT images. Multimedia Tools and Applications, 1-43.
[27] Sumathy, B., Dadheech, P., Jain, M., Saxena, A., Hemalatha, S., Liu, W., & Nuagah, S. J. (2022). A Liver Damage Prediction Using Partial Differential Segmentation with Improved Convolutional Neural Network. Journal of Healthcare Engineering, 2022.
[28] Trivizakis, E., Manikis, G. C., Nikiforaki, K., Drevelegas, K., Constantinides, M., Drevelegas, A., & Marias, K. (2018). Extending 2-D convolutional neural networks to 3-D for advancing deep learning cancer classification with application to MRI liver tumor differentiation. IEEE journal of biomedical and health informatics, 23 (3), 923-930.
[29] Wang, C. J., Hamm, C. A., Savic, L. J., Ferrante, M., Schobert, I., Schlachter, T., ... & Letzen, B. (2019). Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features. European radiology, 29, 3348-3357.