نوع مقاله : پژوهشی

نویسندگان

دانشگاه ملایر

چکیده

نانوساختارهای ZnxNi1-xO با استفاده از روش سل ژل با موفقیت با استفاده از نمک نیترات روی در بازه درصد ناخالصی 3 تا 10 درصد سنتز شدند. نتایج XRD نشان داد که تغییر درصد میزان ناخالصی نتوانست ساختار هگزاگونال نانوساختارهای ZnxNi1-xO)) تغییر دهد به این صورت که نانوساختارهای اکسیدروی آلاییده شده با نیکل همانند اکسید روی خالص ساختار هگزاگونال دارند که بیان می‌کند آلاییدگی نیکل در جایگاه رویِ ساختار کریستالی جای نشین شده است. همچنین در نمونه های آلاییده شده با %10 و %5/7 x= ، قله مربوط به شبکه کریستالی اکسید نیکل در صفحه [200] مشاهده شد. نتایج FT-IR دو پیک مربوط به دو مد کششی Ni-O و Zn-O در همه نانوساختارهای ZnxNi1-xO را تایید کرد. همچنین دو گروه عاملی هیدروکسیل و کربوکسیل نیز بر روی سطح نمونه ها مشاهده شد. نتایج FESEM نشان داد نانوساختارهای ZnxNi1-xO دارای شکل کروی و اندازه ذرات در ابعاد بین 30 الی 60 نانومتر هستند. بررسی نتایج طیف UV-Visible نشان داد که گاف نواری نانوساختارها به میزان آلاییده وابسته است، به طوری که با تغییر غلظت عنصر آلاینده نیکل مقدار گاف انرژی نانوساختارها تغییر کرد و بیشترین گاف انرژی مربوط به نمونه تهیه شده با درصد وزنی 3 درصد آلاینده می باشد.

کلیدواژه‌ها

[1] Findik, F., Nanomaterials and their applications. Periodicals of Engineering and Natural Sciences, 2021. 9(3): p. 62-75.
[2] Wang, Z.L., Nanostructures of zinc oxide. Materials today, 2004. 7(6): p. 26-33.
[3] Kahouli, M., et al., Structural and optical properties of ZnO nanoparticles prepared by direct precipitation method. Superlattices and Microstructures, 2015. 85: p. 7-23.
[4] Shamirzaev, T.S., et al., Dynamics of Vacancy Formation and Distribution in Semiconductor Heterostructures: Effect of Thermally Generated Intrinsic Electrons. Nanomaterials, 2023. 13(2): p. 308.
[5] Alamdari, S., et al., Preparation and characterization of GO-ZnO nanocomposite for UV detection application. Optical Materials, 2019. 92: p. 243-250.
[6] Inobeme, A., et al., Chemical Nanosensors for Monitoring Environmental Pollution, in Advanced Application of Nanotechnology to Industrial Wastewater. 2023, Springer. p. 93-103.
[7] Anjum, S., et al., Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers, 2021. 13(18): p. 4570.
[8] Muthuvel, A., M. Jothibas, and C. Manoharan, Effect of chemically synthesis compared to biosynthesized ZnO-NPs using Solanum nigrum leaf extract and their photocatalytic, antibacterial and in-vitro antioxidant activity. Journal of Environmental Chemical Engineering, 2020. 8(2): p. 103705.
[9] Adetunji, C.O., et al., Bio-and nanosensors in the food industry. 2022.
[10] Qamar, M.A., S. Shahid, and M. Javed, Synthesis of dynamic g-C3N4/Fe@ ZnO nanocomposites for environmental remediation applications. Ceramics International, 2020. 46(14): p. 22171-22180.
[11] Demir, M., et al., Facile Fabrication of ZnO Nanoparticles for efficient dye degradation: Effect of Adipic Acid in photocatalytic activity. ChemistrySelect, 2023. 8(8): p. e202203822.
[12] Patel, C., et al., Large and uniform single crystals of MoS2 monolayers for ppb-level NO2 sensing. ACS Applied Nano Materials, 2022. 5(7): p. 9415-9426.
[13] Cheng, H., et al., Characterization of Al-doped ZnO thermoelectric materials prepared by RF plasma powder processing and hot press sintering. Ceramics International, 2009. 35(8): p. 3067-3072.
[14] Zamiri, R., et al., Er doped ZnO nanoplates: synthesis, optical and dielectric properties. Ceramics International, 2014. 40(1): p. 1635-1639.
[15] Dinesha, M., et al., Structural and dielectric properties of Fe doped ZnO nanoparticles. Indian Journal of Physics, 2013. 87: p. 147-153.
[16] Lotus, A., et al., Effect of aluminum oxide doping on the structural, electrical, and optical properties of zinc oxide (AOZO) nanofibers synthesized by electrospinning. Materials Science and Engineering: B, 2010. 166(1): p. 61-66.
[17] Zamiri, R., et al., Effects of rare-earth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method. Ceramics international, 2014. 40(1): p. 523-529.
[18] Astinchap, B., R. Moradian, and M.N. Tekyeh, Investigating the optical properties of synthesized ZnO nanostructures by sol-gel: The role of zinc precursors and annealing time. Optik, 2016. 127(20): p. 9871-9877.
[19] Sahu, K. and A.K. Kar, Morphological, optical, photocatalytic and electrochemical properties of hydrothermally grown ZnO nanoflowers with variation in hydrothermal temperature. Materials Science in Semiconductor Processing, 2019. 104: p. 104648.
[20] Lupan, O., et al., Synthesis and characterization of ZnO nanowires for nanosensor applications. Materials Research Bulletin, 2010. 45(8): p. 1026-1032.
[21] Raoufi, D., Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renewable Energy, 2013. 50: p. 932-937.
[22] Abisha, P., C. Jinitha, and S. Sonia, Hierarchical synthesis of binary ZnO@ MWCNTs heterogeneous photocatalyst derived from porous Zn metal organic framework (MOF) template: Study on the effective photodegradation of Congo red (CR) dye. Current Applied Physics, 2024.
[23] Husain, S., et al., Nickel sub-lattice effects on the optical properties of ZnO nanocrystals. J. Optoelectron. Eng, 2013. 1(1): p. 28-32.
[24] Kiziltaş, H., T. Tekin, and D. Tekin, Synthesis, characterization of Fe3O4@ SiO2@ ZnO composite with a core-shell structure and evaluation of its photocatalytic activity. Journal of Environmental Chemical Engineering, 2020. 8(5): p. 104160.
[25] Parra-Palomino, A.G., Room-temperature synthesis and characterization of highly monodisperse transition metal-doped ZnO nanocrystals. 2006.
[26] Abhijith, A., A. Srivastava, and A. Srivastava. Synthesis and characterization of magnesium doped ZnO using chemical route. in Journal of Physics: Conference Series. 2020. IOP Publishing.
[27] Mohandesi, M., M. Tavakolian, and M.R. Rahimpour, Eggplant as an appreciable bio-template for green synthesis of NiO nanoparticles: Study of physical and photocatalytic properties. Ceramics International, 2022. 48(16): p. 22820-22826.
[28] Xiong, G., et al., Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. physica status solidi c, 2006. 3(10): p. 3577-3581.
[29] Soitah, T.N., Y. Chunhui, and S. Liang, Effect of Fe doping on structural and electrical properties of nanocrystalline ZnO thin films prepared by sol–gel dip coating technique. Science of Advanced Materials, 2010. 2(4): p. 534-538.
[30] Vanheusden, K., et al., Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Applied physics letters, 1996. 68(3): p. 403-405.
[31] Pudukudy, M. and Z. Yaakob, Facile synthesis of quasi spherical ZnO nanoparticles with excellent photocatalytic activity. Journal of Cluster Science, 2015. 26: p. 1187-1201.
[32] Sharma, S.K., et al., Dependence of band gap on deposition parameters in CdSe sintered films. Chalcogenide Letters, 2008. 5(4): p. 73-78.
[33] Faramawy, A., et al., Structural, optical, magnetic and electrical properties of sputtered ZnO and ZnO: Fe thin films: The role of deposition power. Ceramics, 2022. 5(4): p. 1128-1153.