[1] Aghbolaghi S., Mohammadi-Vanyar O., and Abbaspoor S. (2021). Stabilization of Polymer Solar Cells and Their Importance in Photovoltaic System: A Review, Iran. J. Polym. Sci. Technol. (Persian), 34,99-129.
[2] Shi, D., Adinolfi, V., Comin, R., Yuan, M., Alarousu, E., Buin, A., & Sargent, E. H. (2015). Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 347(6221), 519-522.
[3] Kusuma, D. M., Alfaruqi, M. H., Wang, C. H., & Wu, K. C. (2020). Poly (sulfone) based membranes for carbon dioxide capture: A review. Journal of Membrane Science, 610, 118304.
[4] Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., & Seok, S. I. (2014). Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature materials, 13(9), 897-903.
[5] Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348(6240), 1234-1237.
[6] Li, X., Zhu, H., Chen, C., Wang, J., & Li, Y. (2016). Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in biotechnology, 34(7), 618-632.
[7] Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., ... & Grätzel, M. (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2, 591.
[8] Zhang, Y., Liu, Y., Wang, Y., Xu, X., & Chen, Y. (2017). Facile synthesis of high-quality CsPbBr3 perovskite nanocrystals via organic–inorganic hybrid precursors. Journal of Materials Chemistry C, 5(34), 8805-8810.
[9] Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458), 316-319.
[10] Anaraki, E. H., Kermanpur, A., Steier, L., Domanski, K., Matsui, T., Tress, W., ... & Grätzel, M. (2016). Highly efficient and stable solar cells based on crystalline oriented perovskite. The journal of physical chemistry letters, 7(5), 893-898.
[11] Bai, H., Li, C., & Shi, G. (2011). Functional composite materials based on chemically converted graphene. Advanced Materials, 23(9), 1089-1115.
[12] Kim, J. H., Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., & Seok, S. I. (2015). High-performance and stable perovskite solar cells based on ZnO nanorods as the electron transport layer. ACS nano, 9(2), 1955-1963.
[13] Li, Y., & Zhang, S. (2016). Structural and optoelectronic properties of organic–inorganic hybrid perovskites: theoretical insights from first-principles calculations. Journal of Materials Chemistry A, 4(17), 6371-6383.
[14] Li, Z., Yang, M., Park, J. S., Wei, S. H., & Berry, J. J. (2016). Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials, 28(9).
[15] Ahn, N., Son, D. Y., Jang, I. H., Kang, S. M., Choi, M., & Park, N. G. (2015). Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. Journal of the American Chemical Society, 137(27), 8696-8699.
[16] Wu, C. G., Chiang, C. H., Tseng, Z. L., Nazeeruddin, M. K., Hagfeldt, A., & Grätzel, M. (2015). High efficiency stable inverted perovskite solar cells without current hysteresis. Energy & Environmental Science, 8(9), 2725-2733.
[17] Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G., & Wei, S. H. (2015). Self‐regulation mechanism for charged point defects in hybrid halide perovskites. Angewandte Chemie, 127(6), 1811-1814.
[18] Zhao, B., Jin, S. F., Huang, S., Liu, N., Ma, J. Y., Xue, D. J., ... & Ding, J. (2018). Ge, Q.-Q.; Feng, Y.; Hu, J.-S. Thermodynamically Stable Orthorhombic γ-CsPbI 3 Thin Films for High-Performance Photovoltaics. J. Am. Chem. Soc, 140(37), 11716-11725.
[19] Akhair, S. M., Harun, Z., Jamalludin, M. R., Shuhor, M. F., Kamarudin, N. H., Yunos, M. Z., ... & Azhar, M. F. H. (2017). Effect of graphene oxide with controlled stirring time. Chemical Engineering Transactions, 56, 709-714.
[20] Ameen, S., Rub, M. A., Kosa, S. A., Alamry, K. A., Akhtar, M. S., Shin, H. S., ... & Nazeeruddin, M. K. (2016). Perovskite solar cells: influence of hole transporting materials on power conversion efficiency. ChemSusChem, 9(1), 10-27.
[21] Cho, Y., Soufiani, A. M., Yun, J. S., Kim, J., Lee, D. S., Seidel, J., ... & Ho‐Baillie, A. W. (2018). Mixed 3D–2D passivation treatment for mixed‐cation lead mixed‐halide perovskite solar cells for higher efficiency and better stability. Advanced Energy Materials, 8(20), 1703392.
[22] Zhao, B., Jin, S. F., Huang, S., Liu, N., Ma, J. Y., Xue, D. J., ... & Ding, J. (2018). Ge, Q.-Q.; Feng, Y.; Hu, J.-S. Thermodynamically Stable Orthorhombic γ-CsPbI 3 Thin Films for High-Performance Photovoltaics. J. Am. Chem. Soc, 140(37), 11716-11725.
[23] Huang, Q., et al. "Graphene oxide-wrapped CsPbI3 perovskite nanocrystals for high-performance photovoltaics." Journal of Materials Chemistry A 7.24 (2019): 14604-14612.
[24] Zhang, X., et al. "Graphene oxide wrapped CsPbI3 perovskite nanocrystals as an efficient charge extraction layer for high-performance perovskite solar cells." Journal of Materials Chemistry A 7.29 (2019): 17375-17382.
[25] Li, X., et al. "Enhancing the performance and stability of CsPbI3 perovskite solar cells using a graphene oxide electron transport layer." Journal of Materials Chemistry A 8.6 (2020): 3113-3120