Document Type : Research

Authors

1 Payamme nor university

2 Nuclear Physics, Gilan University

3 Student, Department of Physics, Payame Noor University, Tehran, Iran

Abstract

The induction of magnetization in two-dimensional dichalcogenide materials is one of the potentials of these materials in the manufacture of spintronic devices. Using basic principles calculations and using the 3d transition metal doping technique, the magnetic property of the single-layer dichalcogenide 1T-NiTe2 was investigated. Results It shows that doping transition metals V, Cr, Mn, and Fe magnetize the structure. The highest and lowest values of induced magnetization are related to the Cr atom and Fe atom, respectively. Cr atoms form a ferromagnetic (FM) coating with adjacent nickel atoms and an antiferromagnetic (AFM) hybrid with telluride atoms. While the Fe atom has hybrid antiferromagnetism with nearby nickel and telluride atoms, which motivates less magnetization in the system.

Keywords

  1. [1] P. Joensen, R. Frindt, and S. Morrison, Single-layer MoS2, Mater. Res. Bull. 21, 457 (1986).

    [2] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. USA 102, 10451 (2005).

    [3] K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Atomically ThinMoS2: ANewDirect-GapSemiconductor,Phys.Rev.Lett. 105, 136805 (2010).

    [4] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U.Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan,

    1. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, and V. Nicolosi, Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science 331, 568 (2011).

    [5] C. Ataca, H. ¸Sahin, and S. Ciraci, Stable, single-layer MoX2 transition-metal oxides and dichalcogenides in a honeycomblike structure, J. Phys. Chem. C 116, 8983 (2012).

    [6] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10, 1271 (2010).

    [7] C. Ataca and S. Ciraci, Functionalization of single-layer MoS2 honeycomb structures, J. Phys. Chem. C 115, 13303 (2011).

    [8] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6, 147 (2011). [9] S. Cahangirov, C. Ataca, M. Topsakal, H. Sahin, and S. Ciraci, Frictional Figures of Merit for Single Layered Nanostructures, Phys. Rev. Lett.108, 126103 (2012). [10] B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution, J. Am. Chem. Soc. 127, 5308 (2005).

    [11] M. Bernardi, M. Palummo, and J. C. Grossman, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials, Nano Lett. 13, 3664 (2013).

    [12] Ataca, C., Sahin, H., and Ciraci, S. 2012. Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure. J. Phys. Chem. C. 116, 8983−8999.

    [13] Ch. Zhao, Ch.Jin, J. Wu, W. Ji., Magnetism in molybdenum disulphide monolayer with sulfur substituted by 3d transition metals. J. Appl. Phys. 120, 144305 (2016).

    [14] Cecil N.M. Oumaa, Kingsley O. Obodoa, Cemal Parlakb, George O. Amoloc., Effect of 3d transition metal substitutional dopants and adatoms on mono layer TcS2 ab initio insights. PhysicaE: Low-dimensional Systems and Nanostructures123, 114165 (2020).

    [15] M. Wu, X. Yao, Y. Hao, H. Dong, Y. Cheng et al., Electronic structures, magnetic properties and band alignments of 3d transition metal atoms doped monolayer MoS2, Physics Letters A, S0375-9601(2017).

    [16] M. Benali Kanoun., Tuning magnetic properties of two-dimensional MoTe2 monolayer by doping 3d transition metals: Insights from first principles calculation. Journal of Alloys and Compounds, S0925-8388(2018).

    [17] M. Gholami, Z. Golsanamlou & H. Rahimpour Soleimani., Effects of 3d transition metal impurities and vacancy defects on electronic and magnetic properties of pentagonal PdS2: Competition between exchange splitting and crystal fields. Scientific Reports, 12: 10838, 2022.

    [18] Y. Zhang., Y.Zhao, Y. Xu, L. He., Tuning magnetic and optical properties of monolayer WSe2 by doping C, N, P, O, S, F, and Cl: First principles study. Solid State Communications327, 114233 (2021).

    [19] A.Ur Rahmana, H. Ullahc, M. Vermad, Sh. Khanc., Functionalization of monolayer-CdS by metal and non-metal elemental substitution: First-principle understanding. Journal of Magnetism and Magnetic Materials 515, 16721 (2020).

     [20] M. Gholami, H. Rahimpour Soleimani., Magnetic and Electronic Properties of Pd2S4 Monolayer Dichalcogenid under Doping of Atoms Adjacent to Sulfur Atom. BiQuarterly Journal of Optoelectronic (P 105-111) 2022.

    [21] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett  77, 3865–3868;(1996).

    [22] P. E. Blöchl, Phys. Rev. B 50, 17953–17979;(1994).

    [23] M. Aras , ÇKılıç., Magnetic ground state in FeTe2, VS2, and NiTe2 monolayers: Antiparallel magnetic moments at chalcogen atoms. PHYSICAL REVIEW B 101, 054429 (2020).