Document Type : Research

Authors

1 Islamic Azad University, Shiraz branch

2 Islamic Azad University, Shiraz Branch

Abstract

In this study, we investigate the effect of magnetic field on energy states at the  quantum dot and the  quantum anti-dot Based on the finite difference method numerical calculations show that the magnetic field effect on the energy satates of quantum dots and quantum anti-dots is quite different Also, using three types of linear polarization (LP), right circular polarization (RCP) and left circular polarization (LCP), the Oscillator strength for  for the quantum dot and quantum anti-dot point at the presence of the magnetic field is calculated

Keywords

[1] Mowbray, D J. & Skolnick, M S. (2005). New physics and devices based on self-assembled semiconductor quantum dots Journal of Physics D: Applied Physics, 38 (13), 2059
[2] Vahdani, M R K. & Rezaei, G. (2010). Intersubband optical absorption coefficients and refractive index changes in a parabolic cylinder quantum dot Physics Letters A, 374 (4), 637-643
[3] Jafari, A R. (2014). Study of oscillator strengths of hydrogenic impurity in an inhomogeneous finite and infinite spherical quantum dots Physica B, 446, 17-21
[4] Yilmaz, S. & Şafak, H. (2007). Oscillator strengths for the intersubband transitions in a CdS–SiO 2 quantum dot with hydrogenic impurity Physica E: Low-dimensional Systems and Nanostructures, 36 (1), 40-44
[5] Yakar, Y, Çakır, B. & Özmen, A. (2018). Dipole and quadrupole polarizabilities and oscillator strengths of spherical quantum dot Chemical Physics, 513, 213-220
[6] Naimi, Y, Vahedi, J. & Soltani, M R. (2015). Effect of position-dependent effective mass on optical properties of spherical nanostructures Optical and Quantum Electronics, 47, 2947-2956
[7] Sadeghi, E. (2009). Impurity binding energy of excited states in spherical quantum dot Phys E, 41 (7), 1319-1322
[8] Naimi, Y. & Jafari, A R. (2012). Oscillator strengths of the intersubband electronic transitions in the multi-layered nano-antidots with hydrogenic impurity J Comput Electron, 11:414-420
[9] Karimi, M J. & Rezaei, G. (2012). Magnetic field effects on the linear and nonlinear optical properties of coaxial cylindrical quantum well wires J Appl Phys, 111, 064313
[10] Jafari, A R. & Naimi, Y. (2013). Linear and nonlinear optical properties of multi-layered spherical nano-systems with donor impurity in the center J Comput Electron, 12:36-42
[11] Davatolhagh, S., Jafari, A.R. & Vahdani, M R K. (2012). Oscillator strengths of the intersubband electronic transitions in the hydrogenic nanoantidots Superlattices and Microstructures, 51 (1), 62-72
[12] Kostic, R. & Stojanovic, D. (2020). Intersubband transitions in spherical quantum dot quantum well nanoparticle Opt Quant Electron, 52:285
[13] Holovatsky, V.A., Voitsekhivska, O M. & Yakhnevych, M Y. (2017). Effect of magnetic field on an electronic structure and intraband quantum transitions in multishell quantum dots Physica E, 93:295-300
[14] Sadeghi, E. (2011). Electric field and impurity effects on optical property of a three-dimensional quantum dot: A combinational potential scheme, Superlattices and Microstructures, 50 (4), 331-339
[15] Bychkov, Yu A. & Rashba, E I. (1984). Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, Phys C: Solid State Phys, 17, 6039
[16] Raigoza, N., Duque, C A., Reyes-Gómez, E. & Oliveira, L E. (2005). Effects of hydrostatic pressure and applied electric fields on the exciton states in GaAs/Ga1−xAlxAs quantum wells Physica B: Condensed Matter, 367 (1), 267-274
[17] Yakar, Y., Çakır, B. & Özmen, A. (2021). Magnetic Field Effects on Oscillator Strength, Dipole Polarizability and Refractive Index Changes in Spherical Quantum Dot Chemical Physics Letters, 767, 138346
[18] Dane, C., Akbas, H., Guleroglu, A. & Kasapoglu, S.A.K. (2011). The hydrostatic pressure and electric field effects on the normalized binding energy of hydrogenic impurity in a GaAs/AlAs spherical quantum dot Phys E, 44 (1), 186-189
[19] Baser, P., Elagoz, S. & Kartal, D. (2010). The effects of pressure and barrier height on donor binding energy in GaAs/Ga1−xAlxAs cylindrical quantum well wires Phys B, 405 (16),3239-3242
[20] Rezaei, G. & Shojaeian Kish, S. (2013). Linear and nonlinear optical properties of a hydrogenic impurity confined in a two-dimensional quantum dot: Effects of hydrostatic pressure, external electric and magnetic fields Superlattices Microstructures, 53,99-112
[21] Xie, W. (2012). Electron Raman scattering of a two-dimensional pseudodot system Phys Lett A, 376 (19), 1657-1660
[22] Perez-Merchancano, S T., Franco, J., & Silva-Valenci, J. (2008). The effects of pressure and barrier height on donor binding energy in GaAs/Ga1−xAlxAs cylindrical quantum well wires Microelectron J, 39 (3-4), 383-386
[23] Liang, S., Xie, W., Li, X. & Shen, H. (2011). Photoionization and binding energy of a donor impurity in a quantum dot under an electric field: Effects of the hydrostatic pressure and temperature Superlattices Microstructures, 49 (6), 623-631
[24] S M Bilankohi, M Ebrahimzadeh, T Ghaffary. (2015). Study of the properties of Au/Ag core/shell nanoparticles and its application, Indian Journal of Science and Technology 8 (2015) 31-33
[25] Safarpour, M., Moradi, M. & Barati, M. (2012). Hydrostatic pressure and temperature effects on the electronic energy levels of a spherical quantum dot placed at the center of a nano-wire Superlattices Microstructures, 52 (4), 687-696
[24] Liang, S. & Xie, W. (2011). Effects of the hydrostatic pressure and temperature on optical properties of a hydrogenic impurity in the disc-shaped quantum dot Phys B, 406 (11), 2224-2230
[27] Sivakami, A. & Gayathri, V. (2013). Hydrostatic pressure and temperature dependence of dielectric mismatch effect on the impurity binding energy in a spherical quantum dot Superlattices Microstructures, 58 (11), 218-227
[28] Kasapoglu, E. (2008). The hydrostatic pressure and temperature effects on donor impurities in GaAs/Ga1 − xAlxAs double quantum well under the external fields Phys Lett A, 373 (1), 140-143
[29] Farkoush, B A., Safarpour, Gh. & Zamani, A. (2013). Linear and nonlinear optical absorption coefficients and refractive index changes of a spherical quantum dot placed at the center of a cylindrical nano-wire: Effects of hydrostatic pressure and temperature Superlattices Microstructures, 59, 66-76
[30] Erdogan, I., Akankan, O. & Akbas, H. (2013). Simultaneous effects of temperature, hydrostatic pressure and electric field on the self-polarization and electric field polarization in a GaAs/Ga0 7Al0 3As spherical quantum dot with a donor impurity Superlattices Microstructures, 59, 13-20
[31] Jahan, K L., Boda, A., Shanka, I V., Raju, Ch N. & Chatterjee, A. (2018). Magnetic feld efect on the energy levels of an exciton in a GaAs quantum dot: Application for excitonic lasers Scientific Reports, 8:5073
[32] Tanhaei, M H. & Rezaei, G. (2016). Hydrogenic impurity, external electric and magnetic fields effects on the nonlinear optical properties of a multi-layer spherical quantum dot Superlattices and Microstructures, 98, 29-36
[33] Sadeghi, E. & Rezaei, G. (2010). Effect of magnetic field on the impurity binding energy of the excited states in spherical quantum dot Pramana, 75 (4), 749-755
[34] Akır, B C. Yakar, Y. & Ozmen, A. (2017). Linear and nonlinear absorption coefficients of spherical quantum dot inside external magnetic field Physica B: Condensed Matter, 510, 86-91
[35] Sakurai, J J. (1967). Advanced quantum Mechanics Reading MA: Addison- wesley
[36] E B Al, E Kasapoglu, S Sakiroglu, H Sari, I Sokmen, C A Duque. (2020). Binding energies and optical absorption of donor impurities in spherical quantum dot under applied magnetic field, Physica E 119 (2020) 114011
[37] G V B de Souza, A Bruno-Alfonso. (2015). Finite-difference calculation of donor energy levels in a spherical quantum dot subject to a magnetic field, Physica E 66 (2015) 128–132
   
 [38] Zettili, N. (2007). Quantum Mechanics Concepts and Applications Vol II (337-340)
[39] Boyd, R. (2007). Nonlinear Optics (3rd Edition) New York, United State