Document Type : Research

Author

University of Zanjan

Abstract

We introduce a trilayer permanent magnetic lattice for ultracold atoms which is created by two 2D arrays of square magnetic slabs plus a bias magnetic field. Three separate 2D arrays of magnetic microtraps located above the top layer of magnetic slabs, below the bottom layer and between them are produced. We provide analytical expressions for determining the location of non-zero magnetic field minima, as well as other physical quantities such as the absolute value of the magnetic field (B), curvatures, and trap frequencies at each minimum. The analytical expressions for B are in good agreement with the numerical results. Therefore, all the analytical expressions extracted from them are reliable. Some of the relevant physical quantities can be controlled using the bias magnetic field. Also, the trap frequencies between the magnetic layers in a trilayer lattice are higher compared to those in a bilayer lattice created by a single layer of magnets. Therefore, atom loss decreases and a better confinement is provided for them.

Keywords

[1] A. Günther, S. Kraft, M. Kemmler, D. Koelle, R. Kleiner, C. Zimmermann, and J. Fortágh, Diffraction of a Bose-Einstein Condensate from a Magnetic Lattice on a Microchip. Phys. Rev. Lett. 95 (2005) 170405.
[2] J. Fortágh and C. Zimmermann, Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79 (2007) 235.
[3] S. Ghanbari, T. D. Kieu, A. Sidorov and P. Hannaford, Permanent magnetic lattices for ultracold atoms and quantum degenerate gases. J. Phys. B: At. Mol. Opt. Phys. 39 (2006) 847–860.
[4] S. Ghanbari, T. D. Kieu and P. Hannaford, A class of permanent magnetic lattices for ultracold atoms. J. Phys. B: At. Mol. Opt. Phys. 40 (2007) 1283–1294.
[5] A. Abdelrahman, P. Hannaford, and K. Alameh, Adiabatically induced coherent Josephson oscillations of ultracold atoms in an asymmetric two-dimensional magnetic lattice. Optics Express 17 (2009) 24358.
[6] R. Schmied, D. Leibfried, R. J. C. Spreeuw and S. Whitlock, Optimized magnetic lattices for ultracold atomic ensembles. New J. Phys. 12 (2010) 103029.
[7] A. Mohammadi, S. Ghanbari and A. Pariz, A two-dimensional permanent magnetic lattice for ultracold atoms. Phys. Scr. 88 (2013) 015601.
[8] A. L. La Rooij, S. Couet, M. C. van der Krogt, A. Vantomme, K. Temst, R. J. C. Spreeuw, Deposition and patterning of magnetic atom trap lattices in FePt films with periods down to 200 nm. J. of Appl. Phys. 124 (2018) 044902.
[9] P. Karimi and S. Ghanbari, Analytic Expressions for a 2D Permanent Magnetic Lattice with a 3D Bias Magnetic Field for Ultracold Atoms. J. Low Temp. Phys. 192 (2018) 212–223.
[10] A. L. La Rooij, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, Designs of magnetic atom-trap lattices for quantum simulation experiments. Phys. Rev. A 99 (2019) 022303.
[11] H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, Bose-Einstein Condensation in a Surface Microtrap. Phys. Rev. Lett. 87 (2001) 230401.
[12] E. A. Hinds and I. G. Hughes, Magnetic atom optics: mirrors, guides, traps, and chips for atoms. J. Phys. D: Appl. Phys. 32 (1999) R119–R146.
[13] C. D. J. Sinclair, E. A. Curtis, I. Llorente Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, Bose-Einstein condensation on a permanent-magnet atom chip. Phys. Rev. A 72 (2005) 031603(R).
[14] I. Barb, R. Gerritsma, Y. T. Xing, J. B. Goedkoop and R. J. C. Spreeuw, Creating Ioffe-Pritchard micro-traps from permanent magnetic film with in-plane magnetization. Eur. Phys. J. D 35 (2005) 75–79.
[15] C. D. J. Sinclair, E. A. Curtis, J. A. Retter, B. V. Hall, I. Llorente Garcia, S. Eriksson, B. E. Sauer and E. A. Hinds, Preparation of a Bose–Einstein condensate on a permanent-magnet atom chip. J Phys: Conf. Series 19 (2005) 74.
[16] J. Yin, W. Gao, J. Hu and Y. Wang, Magnetic surface microtraps for realizing an array of alkali atomic Bose–Einstein condensates or Bose clusters. Opt. Commun. 206 (2002) 99-113.
[17] A. Grabowski and T. Pfau, A lattice of magneto-optical and magnetic traps for cold atoms. Eur. Phys. J. D 22 (2003) 347–354.
[18] A. Abdelrahman, M. Vasiliev, K. Alameh, and P. Hannaford, Asymmetrical two-dimensional magnetic lattices for ultracold atoms. Phys. Rev. A 82 (2010) 012320.
[19] S. Ghanbari, A. Abdalrahman, A. Sidorov and P. Hannaford, Analysis of a simple square magnetic lattice for ultracold atoms. J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 115301.
[20] Y. Wang, P. Surendran, S. Jose, T. Tran, I. Herrera, S. Whitlock, R. McLean, A. Sidorov, P. Hannaford, Magnetic lattices for ultracold atoms and degenerate quantum gases. Sci. Bull. 61 (2016) 1097-1106.
[21] S. Ghanbari, P. B. Blakie, P.Hannaford and T. D. Kieu, Superfluid to Mott insulator quantum phase transition in a 2D permanent magnetic lattice. Eur. Phys. J. B 70 (2009) 305–310.
[22] M. Singh, M. Volk, A. Akulshin, A. Sidorov, R. McLean and P. Hannaford, One-dimensional lattice of permanent magnetic microtraps for ultracold atoms on an atom chip. J. Phys. B: At. Mol Opt. Phys. 41 (2008) 065301.
[23] S. Jose, P. Surendran, Y. Wang, I. Herrera, L. Krzemien, S. Whitlock, R. McLean, A. Sidorov, and P. Hannaford, Periodic array of Bose-Einstein condensates in a magnetic lattice. Phys. Rev. A 89 (2014) 051602(R).
[24] V. Y. F. Leung, D. R. M. Pijn, H. Schlatter, L. Torralbo-Campo, A. L. La Rooij, G. B. Mulder, J. Naber, M. L. Soudijn, A. Tauschinsky, C. Abarbanel, B. Hadad, E. Golan, R. Folman, R. J. C. Spreeuw, Magnetic-film atom chip with 10 μm period lattices of microtraps for quantum information science with Rydberg atoms. Rev Sci Instrum 85 (2014) 053102.
[25] P. Surendran, S. Jose, Y. Wang, I. Herrera, H. Hu, X. Liu, S. Whitlock, R. McLean, A. Sidorov, and P. Hannaford, Radio-frequency spectroscopy of a linear array of Bose-Einstein condensates in a magnetic lattice. Phys. Rev. A 91 (2015) 023605.
[26] I. Herrera, Y. Wang, P. Michaux, D. Nissen, P. Surendran, S. Juodkazis, S. Whitlock, R. J. McLean, A. Sidorov, M. Albrecht and P. Hannaford, Sub-micron period lattice structures of magnetic microtraps for ultracold atoms on an atom chip. J. Phys. D: Appl. Phys. 48 (2015) 115002.
[27] S. Whitlock, A. W. Glaetzle and P. Hannaford, Simulating quantum spin models using Rydberg-excited atomic ensembles in magnetic microtrap arrays. J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 074001.
[28] Y. Wang, T. Tran, P. Surendran, I. Herrera, A. Balcytis, D. Nissen, M. Albrecht, A. Sidorov, and P. Hannaford, Trapping ultracold atoms in a sub-micron-period triangular magnetic lattice. Phys. Rev. A 96 (2017) 013630.
[29] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Cold Bosonic Atoms in Optical Lattices. Phys. Rev. Lett. 81 (1998) 3108.
[30] I. Bloch, Ultracold quantum gases in optical lattices. Nature Physics 1 (2005) 23–30.
[31] B. Laburthe Tolra, K. M. O’Hara, J. H. Huckans, W. D. Phillips, S. L. Rolston, and J. V. Porto, Observation of Reduced Three-Body Recombination in a Correlated 1D Degenerate Bose Gas. Phys. Rev. Lett. 92 (2004) 190401.
[32] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch and I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415 (2002) 39–44.
[33] M. Greiner, O. Mandel, T. W. Hänsch and I. Bloch, Collapse and revival of the matter wave field of a Bose–Einstein condensate. Nature 419 (2002) 51.
[34] C. Monroe, Quantum information processing with atoms and photons. Nature 416 (2002) 238–246.
[35] T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps. Phys. Rev. A 61 (2000) 022304.
[36] U. Schneider, L. Hackermüller, S. Will, T. Best, I. Bloch, T. A. Costi, R. W. Helmes, D. Rasch and A. Rosch, Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice. Science 322 (2008)1520–1525.
[37] S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. D. Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom and J. Ye, A Fermi-degenerate three-dimensional optical lattice clock. Science 358 (2017) 90–94.
[38] C. Gross and I. Bloch, Quantum simulations with ultracold atoms in optical lattices. Science 357 (2017) 995–1001.
[39] C. J. Pethick and H. Smith, Bose-Einstein condensation in dilute gases. (2008) 2nd Ed. (Cambridge Cambridge University Press, England).
[40] R. Folman, Material science for quantum computing with atom chips. Quantum Inf Process 10 (2011) 995.
[41] S. Whitlock, R. Gerritsma, T. Fernholz and R. J. C. Spreeuw, Two-dimensional array of microtraps with atomic shift register on a chip. New Journal of Physics 11 (2009) 023021.
[42] J. Y. Wang, S. Whitlock, F. Scharnberg, D. S. Gough, A. I. Sidorov, R. J. McLean and P. Hannaford, Perpendicularly magnetized, grooved GdTbFeCo microstructures for atom optics. J. Phys. D: Appl. Phys. 38 (2005) 4015–4020.