[1]Warschauer, D. Electrical and Optical Properties of Crystalline Black Phosphorus. J. Appl. Phys. 34 (1963) 1853–1860.
[2] T Nishii, et al., Synthesis and Characterization of Black Phosphorus Intercalation Compounds. Synth. Met. 18 (1987) 559–564.
[3] Bridgman, P. M. Two New Modifications of Phosphorous. J. Am. Chem. Soc. 36 (1914) 1344–1363.
[4] L. Li, et al., Black Phosphorus Field-effect Transistors. Nat Nano 9 (2014) 372–377.
[5] H. Liu, et al., Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano 8 (2014) 4033–4041.
[6] K. Pu, et al., Structural, electrical and optical properties of halogen doped phosphorene based on density functional theory, Journal of Alloys and Compounds 812 (2020) 152125.
[7] X. Lin et al., Black-phosphorus-based materials for application in solar cells, Chinese Journal of Structural Chemistry 42:7 (2023) 100109.
[8] N. Nisar Muhammad, et al. Black phosphorene/blue phosphorene van der Waals heterostructure: a potential anode material for lithium-ion batteries, Phys. Chem. Chem. Phys. 23 (2021) 17392-17401.
[9] M. Rajapakse, et al., Gas Adsorption and Light Interaction Mechanism in Phosphorene-Based Field-Effect Transistors Phys. Chem. Chem. Phys. 00 (2019) 1-3.
[10] A.Kh. Tareen, et al., Recent development in emerging phosphorene based novel materials: Progress, challenges, prospects and their fascinating sensing applications, Progress in Solid State Chemistry,65 (2022) 100336.
[11] Ch. I. Idumah,Phosphorene polymeric nanocomposites for electrochemical energy storage applications, Journal of Energy Storage 69 (2023) 107940.
[12] P. Kumari, et al., High efficiency spin filtering in magnetic phosphorene, Phys. Chem. Chem. Phys. 10 (2020)1039.
[13] A. K. Nair, et al., Dramatic magnetic phase designing in phosphorene, Phys. Chem. Chem. Phys. 21 (2019) 23713.
[14] Priyank Rastogi, et al., Effective Doping of Monolayer Phosphorene by Surface Adsorption of Atoms for Electronic and Spintronic Applications, IETE Journal of Research 63:2 (2017) 205-215.
[15] R. Babar, M. Kabir, Transition metal and vacancy defect complexes in phosphorene: a spintronic perspective. J. Phys..Chem. C 120:27 (2016)14991-5000.
[16] Q. Liu, et al., Switching a normal insulator into a topological insulator via electric field with application to phosphorene, Nano Lett 15 (2015)1222–1228.
[17] B. Ghosh, et al., Electric-field tunable Dirac semimetal state in phosphorene thin films, Phys. Rev. B 94 (2016) 205426.
[18] K. Pu, Structural, electrical and optical properties of halogen doped phosphorene based on density functional theory, Journal of Alloys and Compounds 812 (2020) 152125.
[19] K. Zhong, et al., Effect of non-magnetic doping on magnetic state and Li/Na adsorption and diffusion of black phosphorene, J. Phys.: Condens. Matter 34 (2022) 285704.
[20] Sh. Ramachandran, Nickel-decorated single vacancy phosphorene-A favourable candidate for hydrogen storage, internatinal journal o f hydrogen energy 46 (2021) 27597-27611.
[21] M. U. Farooq, et al., Anisotropic bias dependent transport property of defective phosphorene layer, Scientific Reports 5 (2015) 12482.
[22] P. Srivastava, et al., Tuning the Electronic and Magnetic Properties of Phosphorene by Vacancies and Adatoms, J. Phys. Chem. C 119 (2015) 6530−6538.
[23] A. Samipour, et al., Impact of an antidote vacancy on the electronic and transport properties of germanene nanoribbons: A first principles study, J. Phys. and Chem. of Solids 138 (2020) 109289.
[24] P. Hohenburg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864.
[25] R. G. Parr, and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, Oxford. (1989) 333.
[26] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140 (1956) A1133.
[27] J. Callaway and N. H. March, Density Functional Methods: Theory and Applications, Solid State Physics. 38 (1984) 135.
[28] H. Eshchrig, The fundamentals of DFT, University of Tecnology Presden. Germany (2000).
[29] J. P. Pedew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rew. B 45 (1992) 13244.
[30] S. Burke, M. Ernzerhaf and J. Perdew, Phys. Lett. 77 (1996) 3856.
[31] Becke, Axel D. (1993). "Density-functional thermochemistry. III. The role of exact exchange". J. Chem. Phys. 98 (7): 5648–5652. Bibcode:1993JChPh..98.5648B
[32] C. Adamo, B. Vincenzo, Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 110:13 (1999) 6158–6170.
[33] J. Heyd, GE. Scuseria, M. Ernzerhof Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118 (2003) 8207-15.
[34] C. Fiolhais, F.Nogueira, M. Marques, Springer, Heidelberg (2003).
[35] J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, J. Phys.: Condens. Matter 14 (2002) 2745-2779.
[36] L. Li, et al., Direct observation of the layer-dependent electronic structure innphosphorene, Nat. Nanotechnol. 12 (2016) 21.