Document Type : Research

Authors

1 Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Shahid Chamran University of Ahvaz

Abstract

In this study, a small electro-optic switch is designed and simulated by designing a plasmonic waveguide with high confinement. By using a silicon ridge near graphene and adjusting its chemical potential, a plasmonic channel is provided that controls the optical signals transmission depending on the graphene chemical potential. By applying chemical potentials of 0.1 eV and 0.5 eV, the channel loss for frequencies ranging from 25 to 45 THz changes from 78.03 to 0.23 dB/µm. The structure size is 0.057 µm2, which is smaller than similar structures. The small size of the structure is one of the fundamental requirements of optical integrated circuit designing. This feature, along with a coupling length of 218.2 µm and a figure of merit of 1246, indicates that surface plasmons are well confined and guided in the designed channel. With regard to the obtained results, the designed plasmonic switch can be proposed for various analog and digital applications.

Keywords

[1] M. J. Maleki, M. Soroosh, A. Mir, Ultra-fast all-optical 2-to-4 decoder based on a photonic crystal structure, Applied Optics 59 (2020) 5422-5428.
[2] M. J. Maleki, M. Soroosh, A. Mir, Improving the performance of 2-to-4 optical decoders based on photonic crystal structures. Crystals 9 (2019) 635.
[3] M. Makvandi, M. J. Maleki, M. Soroosh, Compact all-optical encoder based on silicon photonic crystal structure, Journal of Applied Research in Electrical Engineering 1 (2021) 1-7.
[4] M. J. Maleki, and M. Soroosh, Design and simulation of a compact all-optical 2-to-1 digital multiplexer based on photonic crystal resonant cavity, Opt Quant Electron 54 (2022) 818.
[5] M. J. Maleki, M. Soroosh, G. Akbarizadeh, A compact high-performance decoder using the resonant cavities in photonic crystal structure, Opt Quant Electron 55 (2023) 852.
[6] K. Heydarian, A. Nosratpour, M. Razaghi, Design and analysis of an all-optical NAND logic gate using a photonic crystal semiconductor optical amplifier based on the Mach–Zehnder interferometer structure, Photonics and Nanostructures-Fundamentals and Applications 49 (2022) 100992.
[7] S. Mohammadi Pouyan, S. Bahadori Haghighi, M. Heidari, D. Abbott, High-performance Mach–Zehnder modulator using tailored plasma dispersion effects in an ITO/graphene-based waveguide, Sci Rep 12 (2022) 12738.
[8] A. Hamouleh Alipour, A. Mir, A. Farmani, Analytical modeling and design of a graphene metasurface sensor for thermo-optical detection of terahertz plasmons, IEEE Sensors Journal 21 (2020) 4525-4532.
[9] F. Haddadan, and M. Soroosh, Design and simulation of a subwavelength 4-to-2 graphene-based plasmonic priority encoder, Optics & Laser Technology 157 (2023) 108680.
[10] Q. Gong, and X. Hu, Photonic crystals: principles and applications, 1st ed. ‎ Jenny Stanford Publishing, Florida (2014) 2-12.
[11] A. Deyasi, P. Debnath, A. K. Datta, S. Bhattacharyya, Photonics, Plasmonics and Information Optics: Research and Technological Advances. 1st ed. CRC Press, Florida, (2021).
[12] Gric T., Plasmonics, 1st ed. Intechopen, London, (2018) 3-6.
[13] T. V. Shahbazyan and M. I. Stockman, Plasmonics: Theory and Applications, 1st ed. Springer Dordrecht, Dordrecht, (2018) 3-17.
[14] V. Skákalová and A. B. Kaiser, Graphene: Properties, Preparation, Characterization and Applications. 2nd ed. Woodhead Publishing, Sawston, (2021) 2-11.
[15] F. Haddadan, M. Soroosh, N. Alaei Sheini, Cross-talk reduction in a graphene-based ultra-compact plasmonic encoder using an Au nano-ridge on a silicon substrate, Applied Optics 61 (2022) 3209-3217.
[16] M. J. Maleki, M. Soroosh, G. Akbarizadeh, A subwavelength graphene surface plasmon polariton-based decoder, Diamond and Related Materials 134 (2023) 109780.
[17] Z. Saleh nezhad, M. Soroosh, A. Farmani, Design and numerical simulation of a sensitive plasmonic-based nanosensor utilizing MoS2 monolayer and graphene, Diamond and Related Materials 131 (2023) 109594.
[18] M. Mohammadi, M. Soroosh, A. Farmani, S. Ajabi, Engineered FWHM enhancement in plasmonic nanoresonators for multiplexer/demultiplexer in visible and NIR range, Optik 274 (2023) 170583.
[19] Y. Karimi, H. Kaatuzian, A. Tooghi, M. Danaie, All-optical plasmonic switches based on Fano resonance in an X-shaped resonator coupled to parallel stubs for telecommunication applications, Optik 243 (2021) 167424.
[20] D. Chauhan, A. Kumar, R. Adhikari, R. K. Saini, S. H. Chang, R. P. Dwivedi, High performance vanadium dioxide based active nano plasmonic filter and switch, Optik, 225 (2021) 165672.
[21] H. Emami Nejad, A. Mir, A. Farmani, R. Talebzadeh, A silicene-based plasmonic electro-optical switch in THz range, Physica Scripta 98 (2022) 015803.
[22] S. Khani, M. Danaie, P. Rezaei, Plasmonic all-optical metal–insulator–metal switches based on silver nano-rods, comprehensive theoretical analysis and design guidelines, J Comput Electron 20 (2021) 442–457.
[23] S. A. Monfared, M. Seifouri, S M. Hamidi, S. M. Mohseni, Electro-optical switch based on one-dimensional graphene-plasmonic crystals, Optical Materials 115 (2021) 111051.
[24] S. K. Sahu, and M.Singh, High-Performance All-Optical Hybrid Plasmonic Switch Using Zn-Doped Cadmium Oxide, IEEE Transactions on Plasma Science 51 (2023) 605-612.
[25] M. Dehghan, M. K. Moravvej Farshi, M. Jabbari, G. Darvish, M. Ghaffari Miab, Bidirectional terahertz plasmonic switch based on periodically structured graphene, JOSA B 40 (2023) 1773-1778.
[26] Y. Sun, Z. Zheng, J. Cheng, J. Liu, Graphene surface plasmon waveguides incorporating high-index dielectric ridges for single mode transmission, Optics Communications 328 (2014) 124-128.
[27] D. Chatzidimitriou, A. Pitilakis, E. E. Kriezis, Rigorous calculation of nonlinear parameters in graphene-comprising waveguides, Journal of Applied Physics 118 (2015) 023105.
[28] M. Liu, X. Yin, E. Ulin Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, A graphene-based broadband optical modulator, Nature 474 (2011) 64-67.
[29] H. C. Casey, and M. B. Panish, Heterostructure Lasers, Part A Fundamental Principals, 1st ed. Academic Press, New York, (1978) 22–51.
[30] Y. Bian, Q. Ren, L. Kang, Y. Qin, P. L. Werner, D. H. Werner, Efficient cross-talk reduction of nanophotonic circuits enabled by fabrication friendly periodic silicon strip arrays. Sci Rep 7 (2017) 15827.
[31] P. Y. Chen, C. Argyropoulos, A. Alu, Terahertz antenna phase shifters using integrally-gated graphene transmission-lines, IEEE Transactions on antennas and propagation 61 (2013) 1528-1537.