[1] M. J. Maleki, M. Soroosh, A. Mir, Ultra-fast all-optical 2-to-4 decoder based on a photonic crystal structure, Applied Optics 59 (2020) 5422-5428.
[2] M. J. Maleki, M. Soroosh, A. Mir, Improving the performance of 2-to-4 optical decoders based on photonic crystal structures. Crystals 9 (2019) 635.
[3] M. Makvandi, M. J. Maleki, M. Soroosh, Compact all-optical encoder based on silicon photonic crystal structure, Journal of Applied Research in Electrical Engineering 1 (2021) 1-7.
[4] M. J. Maleki, and M. Soroosh, Design and simulation of a compact all-optical 2-to-1 digital multiplexer based on photonic crystal resonant cavity, Opt Quant Electron 54 (2022) 818.
[5] M. J. Maleki, M. Soroosh, G. Akbarizadeh, A compact high-performance decoder using the resonant cavities in photonic crystal structure, Opt Quant Electron 55 (2023) 852.
[6] K. Heydarian, A. Nosratpour, M. Razaghi, Design and analysis of an all-optical NAND logic gate using a photonic crystal semiconductor optical amplifier based on the Mach–Zehnder interferometer structure, Photonics and Nanostructures-Fundamentals and Applications 49 (2022) 100992.
[7] S. Mohammadi Pouyan, S. Bahadori Haghighi, M. Heidari, D. Abbott, High-performance Mach–Zehnder modulator using tailored plasma dispersion effects in an ITO/graphene-based waveguide, Sci Rep 12 (2022) 12738.
[8] A. Hamouleh Alipour, A. Mir, A. Farmani, Analytical modeling and design of a graphene metasurface sensor for thermo-optical detection of terahertz plasmons, IEEE Sensors Journal 21 (2020) 4525-4532.
[9] F. Haddadan, and M. Soroosh, Design and simulation of a subwavelength 4-to-2 graphene-based plasmonic priority encoder, Optics & Laser Technology 157 (2023) 108680.
[10] Q. Gong, and X. Hu, Photonic crystals: principles and applications, 1st ed. Jenny Stanford Publishing, Florida (2014) 2-12.
[11] A. Deyasi, P. Debnath, A. K. Datta, S. Bhattacharyya, Photonics, Plasmonics and Information Optics: Research and Technological Advances. 1st ed. CRC Press, Florida, (2021).
[12] Gric T., Plasmonics, 1st ed. Intechopen, London, (2018) 3-6.
[13] T. V. Shahbazyan and M. I. Stockman, Plasmonics: Theory and Applications, 1st ed. Springer Dordrecht, Dordrecht, (2018) 3-17.
[14] V. Skákalová and A. B. Kaiser, Graphene: Properties, Preparation, Characterization and Applications. 2nd ed. Woodhead Publishing, Sawston, (2021) 2-11.
[15] F. Haddadan, M. Soroosh, N. Alaei Sheini, Cross-talk reduction in a graphene-based ultra-compact plasmonic encoder using an Au nano-ridge on a silicon substrate, Applied Optics 61 (2022) 3209-3217.
[16] M. J. Maleki, M. Soroosh, G. Akbarizadeh, A subwavelength graphene surface plasmon polariton-based decoder, Diamond and Related Materials 134 (2023) 109780.
[17] Z. Saleh nezhad, M. Soroosh, A. Farmani, Design and numerical simulation of a sensitive plasmonic-based nanosensor utilizing MoS2 monolayer and graphene, Diamond and Related Materials 131 (2023) 109594.
[18] M. Mohammadi, M. Soroosh, A. Farmani, S. Ajabi, Engineered FWHM enhancement in plasmonic nanoresonators for multiplexer/demultiplexer in visible and NIR range, Optik 274 (2023) 170583.
[19] Y. Karimi, H. Kaatuzian, A. Tooghi, M. Danaie, All-optical plasmonic switches based on Fano resonance in an X-shaped resonator coupled to parallel stubs for telecommunication applications, Optik 243 (2021) 167424.
[20] D. Chauhan, A. Kumar, R. Adhikari, R. K. Saini, S. H. Chang, R. P. Dwivedi, High performance vanadium dioxide based active nano plasmonic filter and switch, Optik, 225 (2021) 165672.
[21] H. Emami Nejad, A. Mir, A. Farmani, R. Talebzadeh, A silicene-based plasmonic electro-optical switch in THz range, Physica Scripta 98 (2022) 015803.
[22] S. Khani, M. Danaie, P. Rezaei, Plasmonic all-optical metal–insulator–metal switches based on silver nano-rods, comprehensive theoretical analysis and design guidelines, J Comput Electron 20 (2021) 442–457.
[23] S. A. Monfared, M. Seifouri, S M. Hamidi, S. M. Mohseni, Electro-optical switch based on one-dimensional graphene-plasmonic crystals, Optical Materials 115 (2021) 111051.
[24] S. K. Sahu, and M.Singh, High-Performance All-Optical Hybrid Plasmonic Switch Using Zn-Doped Cadmium Oxide, IEEE Transactions on Plasma Science 51 (2023) 605-612.
[25] M. Dehghan, M. K. Moravvej Farshi, M. Jabbari, G. Darvish, M. Ghaffari Miab, Bidirectional terahertz plasmonic switch based on periodically structured graphene, JOSA B 40 (2023) 1773-1778.
[26] Y. Sun, Z. Zheng, J. Cheng, J. Liu, Graphene surface plasmon waveguides incorporating high-index dielectric ridges for single mode transmission, Optics Communications 328 (2014) 124-128.
[27] D. Chatzidimitriou, A. Pitilakis, E. E. Kriezis, Rigorous calculation of nonlinear parameters in graphene-comprising waveguides, Journal of Applied Physics 118 (2015) 023105.
[28] M. Liu, X. Yin, E. Ulin Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, A graphene-based broadband optical modulator, Nature 474 (2011) 64-67.
[29] H. C. Casey, and M. B. Panish, Heterostructure Lasers, Part A Fundamental Principals, 1st ed. Academic Press, New York, (1978) 22–51.
[30] Y. Bian, Q. Ren, L. Kang, Y. Qin, P. L. Werner, D. H. Werner, Efficient cross-talk reduction of nanophotonic circuits enabled by fabrication friendly periodic silicon strip arrays. Sci Rep 7 (2017) 15827.
[31] P. Y. Chen, C. Argyropoulos, A. Alu, Terahertz antenna phase shifters using integrally-gated graphene transmission-lines, IEEE Transactions on antennas and propagation 61 (2013) 1528-1537.