Document Type : Research

Authors

Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan

Abstract

In quantum thermal machines, by using a quantum working substance work can be produced. In a quantum Otto machine, if the difference between energy levels are changed by the same ratio in the adiabatic process, the efficiency of this machine is the same as its classical counterparts; However, if this difference is changed inhomogeneously, it will have larger efficiency. Additionally, by the use of non-thermal reservoir (squeezed thermal or coherent thermal) instead of thermal reservoir more work and efficiency can be produced. In this investigation, using a simple harmonic oscillator as the working substance in the quantum Otto machine and adding a delta barrier, in order to make the inhomogeneous difference in energy levels, also considering a non-thermal reservoir, the efficiency and work are investigated. The results show that by utilizing this working substance and non-thermal reservoir, will make efficiency and work to be increased in the special frequency interval.

Keywords

[1] Sayyaadi, H. (2020). Modeling, assessment, and optimization of energy systems. Academic press.
[2] Callen, H. B. (1991). Thermodynamics and Introduction to Thermostatistics. John miley & sons.
[3] Quan, H.T., Liu, Y.X., Sun, C. P., & Nori, F. (2007). Quantum thermodynamic cycle and quantum heat engines. Phys. Rev. E, 76(3), 031105.
[4] Gelbwaser-Klimovsky, D., Bylinskii, A., Gangloff, D., Islam, R., Aspuru-Guzik, A., & Vuletic, V. (2018). Single-atom heat machines enabled by energy quantization. Phys. Rev. Lett., 120(7), 170601.
[5] Levy, A., & Gelbeaser-Kilmovsky, D. (2018). Quantum features and signatures of quantum thermal machines. Thermodynamics in Quantum Regime: Fundamental Aspects and New Directions, 87-126.
[6] Abah, O., Rossangel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., & Lutz, E. (2012). Single-ion heat engine at maximum power. Phys. Rev. Lett., 109(20), 203006.
[7] Roßnagel, J., Dawkins, S. T., Tolazzi, K. N., Abah, O., Lutz, E., Schmidt-Kaler, F., & Singer, K. (2016). A single-atom heat engine. Science, 352(6283), 325-329.
[8] Zhang, K., Barini, F., & Meystre, P. (2014). Quantum optomechanical heat engine. Phys. Rev. Lett., 112(15), 150602.
[9] Elouard, C., Richard, M., & Auffeves, A. (2015). Reversible work extraction in a hybrid opto-mechanical system. New J. phys., 17(5), 055018.
[10] Niskanen, A. Q., Nakamura, Y., & Pekola, J. P. (2007), Information entropic superconducting microcooler. Phys. Rev. B, 76(17), 174523.
[11] Cakmak, S., Altintas, F., & E. Müstecaplıoglu, Ö. (2016). Lipkin-Meshkov-Glick model in a quantum Otto cycle, Eur. Phys. J., 131, 1-9.
[12] Niedenzu, W., Gelbwaser-Klimovsky, D., Kofman, A. G., & Kurizki, G. (2016). On the operation of machines powered by quantum non-thermal baths. New J. phys., 18(8), 083012.
[13] Manzano, G., Galve, F., Zambrini, R., & Parrondo,  J. M. (2016). Entropy production and thermodynamic power of the squeezed thermal reservoir. Phys. Rev. E, 93(5), 052120.
[14] Manzano, G. (2018). Squeezed thermal reservoir as a generalized equilibrium reservoir. Phys. Rev. E, 98(4), 042123.
[15] Roßnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., & Lutz, E. (2014). Nanoscale heat engine beyond the Carnot limit. Phys. Rev. Lett., 112(3), 030602.
[16] Patil, S. H. (2006). Harmonic oscillator with a δ-function potential. Eur. J. phys., 27(4), 899.
[17] Scully, M. O., & Zubairy, M. S. (1999). Quantum Optics.