Document Type : Research

Authors

Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, Tehran, Iran.

Abstract

The primary radiation rays in focal plasma is a soft X-ray. Pin diode detectors are generally used to measure soft X-rays in an integral and time-lapse manner. PBX65 can be mentioned among the most common pin diodes used in soft x-ray detection of miniature generators. This article uses attenuating filters (beryllium and aluminum) to measure soft X-rays in front of the pin diode spectrometer channels. In addition, the effect of thickness on soft X-ray intensity has been investigated experimentally. Finally, the lower thickness of the filter shows a higher transmission of X-rays. There are several factors in photodiode response and X-ray efficiency measurement of devices. The geometry of the filter maker, quantum efficiency of the photodiode, absorbers like the device, and production of X-rays from the working gas of the device. The effect of these factors has been investigated in this article.

Keywords

[1] بررسی گسیل پرتوهای ایکس سخت و نرم و یون‌ها در دستگاه پلاسمای کانونی مدر، پایان‌نامه دکتری، غلامرضا اطاعتی، دانشگاه صنعتی امیرکبیر، تابستان 1389.
]2[ ﻃﺮاحی و ﺳﺎﺧﺖ ﻣﻮﻟﺪ پلاسمای کانونی ﻣﯿﻨﯿﺎﺗﻮری ﺑﺎ اﻧﺮژی ﺣﺪود200 ژول، ﺑﺎ ﺗﻐﺬﯾﻪ سوئیچینگ وﻟﺘﺎژ ﺑﺎﻻ و عملکرد در ﻣﺪ ﺗﺨﻠﯿﻪ تکراری. پایان‌نامه دکتری، حسین جعفری، دانشگاه صنعتی امیرکبیر، تابستان 1398.
]3[ طراحی، ساخت، نصب و راه‌اندازی دستگاه پلاسمای کانونی مدر و بهینه سازی پرتو ایکس سخت حاصل از این دستگاه در فشارهای مختلف گاز کاری. پایان‌نامه دکتری، مرتضی حبیبی، دانشگاه صنعتی امیرکبیر، تابستان 1387.
 
 
[4] Bhuyan, H., Mohanty, S. R., Neog, N. K., Bujarbarua, S., & Rout, R. K. Comparative study of soft x-ray emission characteristics in a low energy dense plasma focus device. Journal of applied physics, 95(6), 2004. 2975-2981.
[5] Soto, L., Silva, P., Moreno, J., Zambra, M., Kies, W., Mayer, R. E.,... & Huerta, L. Demonstration of neutron production in a table-top pinch plasma focus device operating at only tens of joules. Journal of Physics D: Applied Physics, 41(20), 2008. 205215.
[6]  Verri, G., Mezzetti, F., Da Re, A., Rapezzi, L., & Gribkov, V. Fast Neutron Activation Analysis of gold by inelastic scattering, 197Au (n, n'gamma) 197Aum, by means of Plasma Focus device. Nukleonika, 45(3), 2000. 189-191.
[7] Dubrovsky, A., Silin, P., Gribkov, V., & Volobuev, I. DPF device application in the material characterization. Nukleonika, 45(3), 2000. 185-187.
[8] Ivanov, L. I., Dedyurin, A. I., Borovitskaya, I. V., Krokhin, O. N., Nikulin, V., Polukhin, S. N.,... & Fedotov, A. S. Application of plasma focus installations for a study of the influence of deuterium cumulative flows on materials. Pramana, 61(6), 2003. 1179-1185.
[9] Rapezzi, L., Angelone, M., Pillon, M., Rapisarda, M., Rossi, E., Samuelli, M., & Mezzetti, F. Development of a mobile and repetitive plasma focus. Plasma Sources Science and Technology, 13(2), 2004. 272.
[10] Sadowski, M., Herold, H., Schmidt, H., & Shakhatre, M. Filamentary structure of the pinch column in plasma focus discharges. Physics Letters A, 105(3), 1984. 117-123.
[11] Piitran, A. C. Electron and medium energy X-ray emission from a dense plasma focus (Doctoral dissertation, National Institute of Education), 2002.
[12] Burkhalter, P. G., Mehlman, G., Newman, D. A., Krishnan, M., & Prasad, R. R. Quantitative x‐ray emission from a DPF device. Review of scientific instruments, 63(10), 1992. 5052-5055.
[13] Hussain S. S., Ahmad, S.; Murtaza, Ghulam, Zakaullah, M. "Effect of anode shape on correlation of neutron emission with pinch energy for a 2.7 kJ Mather-type plasma focus device," Journal of Applied Physics, vol. 106, 2009. p. 023311.
[14] D’Arcy, R., Chappell, J., Beinortaite, J., Diederichs, S., Boyle, G., Foster, B., ... & Osterhoff, J. Recovery time of a plasma - wakefield accelerator. Nature, 603(7899), 2022. 58-62.
[15] Hahn, E. N., Ghosh, S., Eudave, V., Narkis, J., Angus, J. R., Link, A. J.,... & Beg, F. N. Effect of insulator length and fill pressure on filamentation and neutron production in a 4.6 kJ dense plasma focus. Physics of Plasmas, 29(8). 2022.
[16] Mather, J. W., & Bottoms, P. J. Characteristics of the dense plasma focus discharge. The physics of fluids, 11(3), 1968. 611-618.
[17] Polukhin, S. N., Gurei, A. E., Nikulin, V. Y., Peregudova, E. N., & Silin, P. V. Studying How Plasma Jets are Generated in a Plasma Focus. Plasma Physics Reports, 46, 2020. 127-137.
[18] Zakaullah, M., Ahmad, I., Omar, A., Murtaza, G., & Beg, M. M. Effects of anode shape on plasma focus operation with argon. Plasma Sources Science and Technology, 5(3), 1996. 544.
[19] Bernard, A., Cloth, P., Conrads, H., Coudeville, A., Gourlan, G., Jolas, A.,... & Rager, J. P. The dense plasma focus A high intensity neutron source. Nuclear Instruments and Methods, 145(1), 1977. 191-218.
[20] Hassan, S. M., Zhang, T., Patran, A., Rawat, R. S., Springham, S. V., Tan, T. L., ... & Lee, P. Pinching evidences in a miniature plasma focus with fast pseudospark switch. Plasma Sources Science and Technology, 15(4), 2006. 614.
[21] Soto, L., Pavez, C., Moreno, J., Barbaglia, M., & Clausse, A. Nanofocus: an ultra-miniature dense pinch plasma focus device with submillimetric anode operating at 0.1 J. Plasma Sources Science and Technology, 18(1), 2008. 015007.
[22] Verma, R., Rawat, R. S., Lee, P., Krishnan, M., Springham, S. V., & Tan, T. L. Miniature plasma focus device as a compact hard X-ray source for fast radiography applications. IEEE transactions on plasma science, 38(4), 2010. 652-657.
[23] Omrani, M., Habibi, M., Amrollahi, R., & Khosravi, A. Improvement of corrosion and electrical conductivity of 316L stainless steel as bipolar plate by TiN nanoparticle implantation using plasma focus. International journal of hydrogen energy, 37(19), 2012. 14676-14686.