Document Type : Research

Authors

1 Department of Physics, Jahrom University, Jahrom, Iran

2 Faculty member/Yasouj University

3 Faculty Member/Payame Noor University

Abstract

In this paper, we have been used energy spectrum of ideal single layer graphene to investigate thermodynamic properties of this material. We have used Shannon and Tsallis entropies for investigating the entropy, internal energy and specific heat of this system. We plot these properties versus temperature. The obtained results show that the entropy and internal energy increase with enhancing the temperature and then these reach to a constant values. Also, the specific heat increases until it reaches a maximum and then reduces with increasing the temperature.

Keywords

[1] M. I.  Katsnelson, Graphene: Carbon in Two Dimensions, Cambridge University Press, New York, (2012).

[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005) 197.

[3] A. K. Geim, K. S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183.

[4] Q. Zhao, M. B. Nardelli, J. Bernholc, Ultimate strength of carbon nanotubes: A theoretical study, Phys. Rev. B 65 (2002) 144105.

[5] P. M. Ostrovsky, I. V. Gornyi, A. D. Mirlin, Electron transport in disordered graphene, Phys. Rev. B 74 (2006) 235443.
[6] A. R. Wright, J. Liu, Z. Ma, Z. Zeng, W. Xu, C. Zhang, Thermodynamic properties of graphene nanoribbons under zero and quantizing magnetic fields, Microelectron. J. 40 (2008) 716.
[7] R. Nasir, M.A. Khan, M. Tahir, K. Sabeeh, Thermodynamic properties of a weakly modulated graphene monolayer in a magnetic field‏, J. Phys.: Condens. Matter 22 (2010) 25503.
[8] M. K. Li, S.J. Lee, T.W. Kang, Silicon-compatible high-hole-mobility transistor with an undoped germanium channel for low-power application, Curr. Appl. Phys. 9 (2009) 769.
[9] F. Molitor, J. Gttinger, C. Stampfer, S. Drscher, A. Jacobsen, T. Ihn, and K. Ensslin, Transport gap in side-gated graphene constrictions, J. Phys. Condens. Matter. 23 (2011) 243201.
[10] C. Beck, Generalised information and entropy measures in physics, Contemp. Phys. 50 (2009) 495.

[11] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics , J. Stat. Phys. 52 (1988) 479.

[12] C. Tsallis, R.S. Mendes, A.R. Plastino, The role of constraints within generalized nonextensive statistics, Physica A 261 (1998) 534.

[13] S. Abe, C. Beck, E.G.D. Cohen, Superstatistics, thermodynamics, and fluctuations, Phys. Rev. E 76 (2007) 031102.
[14] G. Kaniadakis, Statistical mechanics in the context of special relativity, Phys. Rev. E 66 (2002) 056125.
[15] S.C. Kenfact, A. Fotue, M.F.C. Fobasso, G.N. Bawe, L.C. Fai, Probability density of bipolaron in a parabolic potential two-dimensional quantum dot under external magnetic and electric fields, Superlattices Microstruct. 111 (2017) 32.
[16] R. Khordad, H.R. Rastegar Sedehi, Magnetic susceptibility of graphene in non-commutative phase-space: Extensive and non-extensive entropy, Eur. Phys. J. Plus, 134 (2019) 133.
[17] R. Khordad, H.R. Rastegar Sedehi, H. Bahramiyan, Study of non-extensive entropy of bound polaron in monolayer graphene, Indian J Phys, 92(8) (2018) 979.
[18] R. Houça, A. Jellal, Thermodynamic properties of graphene in a magnetic field and Rashba coupling, Phys. Scr. 94 (2018) 105707.
[19] H.R. Rastegar Sedehi, Thermodynamics properties of Bernal stacking multilayer graphene‏, Eur. Phys. J. B 93 (2020) 14.

[20] H.R. Rastegar Sedehi, R. Khordad, Entropy and specific heat of graphene at low and high temperatures under an external magnetic field, Solid State Communications 313 (2020) 113911.

[21] H.R. Rastegar Sedehi, R. Khordad, Investigation of specific heat in the monolayer graphene, Iranian Journal of Physics Research, 20 (2020) 355.