Document Type : Research

Authors

1 Department of Physics, Bu-ali Sina University, Hamedan, Iran

2 Department of Physics, Bu Ali Sina University, Hamedan, Iran

Abstract

Impact of minor substitution of carbon on microstructure, magnetic properties and hyperfine interactions of Fe–Si–B–Cu-type metallic glasses was investigated. For this purpose, samples of Fe83.3Si4B12Cu0.7 and Fe83.3Si4B11Cu0.7C1 compositions were prepared using melt spinning technique. Then, to study different characteristics of samples, X-ray diffraction, differential scanning calorimetry, magnetic thermogravimetry, scanning electron microscopy, Mӧssbauer spectrometry, and magnetic measurements were applied. Fully amorphicity of the samples and a larger heat treatment temperature range of the C-containing sample was found. Though minor carbon introduction had negligible effect upon average values of hyperfine magnetic fields and chemical short-range order, structural deviation in topological short-range order was unveiled. No change was observed in saturation magnetization, however, the amount of coercive field in the case of perpendicular external magnetic field decreased significantly.

Keywords

[1] O. Gutfleisch, M. A. Willard, E. Brück, C. H. Chen, S. G. Sankar, J. P. Liu, Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv. Mater. 23(7) (2011) 821-842.
[2] K. Suzuki, G. Herzer, Soft Magnetic Nanostructures and Applications. In: Sellmyer, D., Skomski, R. (eds) Advanced Magnetic Nanostructures. Springer, Boston, MA (2006).
[3] J. Wang, R. Li, N. Hua, L. Huang, T. Zhang, Ternary Fe–P–C bulk metallic glass with good soft-magnetic and mechanical properties, Scripta Materialia 65 (2011) 536-539.
[4] A. Inoue, A. Katsuya, K. Amiya, T. Masumoto, Preparation of Amorphous Fe–Si–B and Co–Si–B Alloy Wires by a Melt Extraction Method and Their Mechanical and Magnetic Properties Mater. Trans. JIM 36 (1995) 802-809.
[5] D. Azuma, R. Hasegawa, Core loss in toroidal cores based on Fe-based amorphous Metglas 2605HB1 alloy, IEEE Trans. Magn. 47 (2011) 3460-3462.
[6] M. L. Soltani, A. Touares, T.A.M. Aboki, and J. Gasser, Thermal effect on structural and magnetic properties of Fe78B13Si9 annealed amorphous ribbons, EPJ Web Conf. (2017) 07002.
[7] A. Makino, C.T. Chang, T. Kubota, A. Inoue, Soft magnetic Fe–Si–B–P–C bulk metallic glasses without any glass-forming metal elements, J. Alloys Comp. 483 (2009) 616–619.
[8] A. Makino, H. Men, K. Yubuta, T. Kubota, Soft magnetic FeSiBPCu heteroamorphous alloys with high Fe content, J. Appl. Phys. 105 (2009) 013922.
[9] H. R. Lashgari, Z.Chen, X. Z. Liao, D. Chu, M. Ferry, S. Li, Thermal stability, dynamic mechanical analysis and nanoindentation behavior of FeSiB(Cu) amorphous alloys, Mater. Sci. Eng. A . 626 (2105) 480-499.
[10] H.R. Lashgari, D. Chu, Sh. Xie, H. Sun, M. Ferry, S. Li, Composition dependence of the microstructure and soft magnetic properties of Fe-based amorphous/nanocrystalline alloys: A review study, J Non Cryst Solids 391 (2014) 61–82.
[11] M. Kurniawan, V. Keylin, and Michael E. McHenry, Alloy substituents for cost reduction in soft magnetic materials, J. Mater. Res. 30 (2015) 1072-1077.
[12] Z. Hao, L. Wei, L. Gao, Y. Wang, X. Bai, X. Tong, X. Liang, N. Yodoshi, R. Umetsu, Y. Kawazoe, Y. Zhang i, Ch. Cao, Effect of P addition on soft magnetic properties of Fe–Si–B–P–Cu–C nano-crystalline alloys, Intermetallics 151 (2022) 107713.
[13] L. Shi, X. Qin, K. Yao, Tailoring soft magnetic properties of Fe-based amorphous alloys through C addition, Prog. Nat. Sci.: Mater. Int. 30 (2020) 208–212.
[14] T. Žák, Y. Jirásková, CONFIT: Mössbauer spectra fitting program, Surf Interface Anal 38 (2006) 710–714.
[15] E. Illeková, FINEMET-type nanocrystallization kinetics, Thermochim Acta. 387(1) (2002) 47-56.
[16] I. Janotova, P. Švec, I. Mat’ko, D. Janicˇkovicˇ, P. Švec Sr., The structure of rapidly quenched Fe–Co–B–Si based systems and the influence of addition of Cu and P, J Alloys Compd. 615 (2014) S198–S202.
[17] J. Xu, Y.Z. Yang, W. Li, Z.W. Xie, X.C. Chen, Effect of the substitution of C for Si on microstructure, magnetic properties and bending ductility in high Fe content FeSiBCuPC alloy ribbons, J Alloys Compd. 727 (2017) 610-615.
[18] A. Wang, Ch. Zhao, H. Men, A. He, Ch. Chang, X. Wang, R. Li, Fe-based amorphous alloys for wide ribbon production with high Bs and outstanding amorphous forming ability, J Alloys Compd. 630 (2015) 209–213.
[19] I. Janotová, J. Zigo, P. Švec, I. Maťko, D. Janičkovič, P. Švec Sr, Crystallization in Rapidly Quenched Fe-B-Si System with Additions of C and Cu, Materials Research. (2015) 18(Suppl. 1): 136-140.
[20] R. Parsons, J. S. Garitaonandia, T. Yanai, K. Onodera, H. Kishimoto, A. Kato, K. Suzuki, Effect of Si on the field-induced anisotropy in Fe-rich nanocrystalline soft magnetic alloys. J Alloys Compd 695 (2017) 3156–3162.
[21] C. C. Cao, Y. G. Wang, L. Zhu, Y. Meng, X. B. Zhai, Y. D. Dai, J. K. Chen, F. M. Pan, Local structure, nucleation sites and crystallization behavior and their effects on magnetic properties of Fe81SixB10P8−xCu1 (x = 0–8). Sci Rep 8 (2018) 1243.
[22] P. Gütlich, E. Bill, A. X. Trautwein, Mossbauer spectroscopy and transition metal chemistry. Springer, Berlin (2011).
[23] K. Ruebenbauer, J. G. Mullen, G. U., Nienhaus, , G. Shupp. Simple model of the diffusive scattering law in glass-forming liquids. Phys. Rev. B 49 (1994) 15607–15614.
[24] Y. Yoshida. Mössbauer Spectroscopic Studies on Atomic Diffusion in Materials. In: Yoshida, Y., Langouche, G. (eds) Modern Mössbauer Spectroscopy. Topics in Applied Physics, vol 137. Springer, Singapore (2021).
[25] R. Feldwisch, B. Sepiol, G. Vogl. Elementary diffusion jump of iron atoms in intermetallic phases studied by Mössbauer spectroscopy 2. From order to disorder. Acta Metall. Mater. 42 (1994) 3175–3181.
[26] B. Fultz. Mössbauer Spectrometry, in Characterization of Materials. Elton Kaufmann, Editor, John Wiley, New York (2011).
[27] K. Narita, H. Fukunaga, J. Yamasaki, Effect of metalloid content on Curie temperature and magnetic moment of amorphous Fe–Si–B alloys. Jpn Appl Phys 16 (1977) 2063–2064.
[28] R.C. O'handley, Modern Magnetic Materials: Principles and Applications, Wiley (2000).
[29] D.B. Miracle, W.S. Sanders, O.N. Senkov, The influence of efficient atomic packing on the constitution of metallic glasses, Phil. Mag. 83 (2003) 2409–2428.
[30] D.B. Miracle, Efficient local packing in metallic glasses, J. Non-Cryst. Solids 342 (2004) 89–96.
[31] A. Takeuchi, A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans. 46 (2005) 2817–2829.
[32] B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, Wiley, (2009).
[33] Y. Wu, X.D. Hui, Z.P. Lu, Z.Y. Liu, L. Liang, G.L. Chen, Effects of metalloid elements on the glass-forming ability of Fe-based alloys, J Alloys Compd. 467 (2009) 187–190.
[34] Lee S, Kato H, Kubota T, Yubuta K, Makino A, Inoue A, Excellent thermal stability and bulk glass forming ability of Fe–B–Nb–Y soft magnetic metallic glass, Mater Trans 49 (2008) 506–512
[35] S. Habibi, S. Soori, S. Atarilar, Formation of Nano-Crystals in the Amorphous Metal Alloy And their Study by the Use of Spectroscopic Mossbauer, Optoelectronic 2(1) (2017) 55-67 (in persian).