Document Type : Research

Authors

1 PhD Student, Department of Physics, Urmia University, Urmia, Iran

2 PhD Student, Department of Physics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

3 Associate Professor, Department of Physics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

Abstract

In this work, for the first time, the qualitative behaviors of squeezing and entanglement in quantum two-mode squeezed radars (QTMS) when the target is present and the signal is transmitted to the target are calculated and their qualitative behaviors are evaluated. The squeezing parameter is a tool in theory similar to the laboratory's signal power. Therefore, the correlation between signal-idler increases or decreases with signal power changes. This increase or decrease of correlation (especially entanglement) leads to improvement or weakening of the performance of quantum radars. In this work, it can be seen that with the increase of the squeezing parameter even at room temperature (300 K), the behavioral quality of the squeezing increases, and hence, the correlation between the signal and the idler also increases. We also examine the entanglement, where we see that there is a maximum limit to increase in signal power that cannot be exceeded, however, this limit can be violated by choosing a suitable receiver, hence at high powers maintained entanglement. Therefore, by controlling the squeezing parameter and choosing a suitable receiver, which leads to the improvement of squeezing and entanglement behaviors, the performance of a QTMS radar can be optimized at room temperature.

Keywords

[1] D. Luong, C. W. Sandbo Chang, A. M. Vadiraj, A. Damini, C. M. Wilson, and B. Balaji, "Receiver operating characteristics for a prototype quantum two-mode squeezing radar," accepted for publication in IEEE, 2019.
[2] Sandbo Chang, C. W..; Vadiraj, A.M.; Bourassa, J.; Balaji, B.; Wilson, C.M. "Quantum-enhanced noise radar". Appl. Phys. Lett. 114 (11): 112601. 2018.
[3] Luong, L; Balaji, B.; Sandbo Chang, C.W.; Ananthapadmanabha Rao, V.M.; Wilson, C. "Microwave quantum radar: an experimental validation". 2018 International Carnahan Conference on Security Technology (ICCST), Montreal, QC: 1–5. 2018.
[4] Shapiro, Jeffrey, "The Quantum illumination story". IEEE Aerospace and Electronic Systems Magazine. 35 (4): 8–20, 2020.
[5] David Luong, Sreeraman Rajan, and Bhashyam Balaji, "Quantum monopulse radar", IEEE Xplore,2020.
[6] David Luong, Sreeraman Rajan, and Bhashyam Balaji, "Entanglement-based quantum radar: From myth to reality". IEEE A&E Systems Magazine. 2020.
[7] Han Liu, Amr Helmy, and Bhashyam Balaji, "Inspiring radar from quantum-enhanced lidar". IEEE A&E SYSTEMS MAGAZINE. 2020.
[8] David Luong, Sreeraman Rajan, and Bhashyam Balaji, "Are quantum radar arrays possible?". Crown. 2019.
[9] David Luong, Bhashyam Balaji, "Quantum radar, “quantum networks, not-so quantum hackers", Proc. SPIE 11018, Signal Processing, Sensor/Information Fusion, and Target Recognition XXVIII, 110181E (7 May 2019).
[10] Marco, Frasco and Alfonso Farina, "Multiple input and multiple output quantum radar", IEEE Radar Conference (RadarConf20). 2020.
[12] Fred Daum, Raytheon, "Quantum Radar Cost and Practical Issues", IEEE A&E Systems Magazine. 2020.
[13] Fred Daum Raytheon, "A system engineering perspective on quantum radar", IEEE International Radar Conference (RADAR). 2020.
[14] Torromé, Ricardo Gallego, Nadya Ben Bekhti-Winkel, and Peter Knott. "Introduction to quantum radar", arXiv preprint arXiv:2006.14238 (2020).
[15] Barzanjeh, Shabir; Guha, Saikat; Weedbrook, Christian; Vitali, David; Shapiro, Jeffrey H.; Pirandola, Stefano. "Microwave quantum illumination", Physical Review Letters.114(8):080503.(2015-02-27).
[16] Barzanjeh, Shabir; Pirandola, Stefano; Vitali, David; Fink, Johannes M. "Microwave quantum illumination using a digital receiver", Science Advances. 6 (19): eabb0451. 2020.
[17] Maccone, Lorenzo, and Changliang Ren. "Quantum radar." Physical Review Letters 124.20 (2020): 200503.
[18] Pirandola, S; Bardhan, B. R.; Gehring, T.; Weedbrook, C.; Lloyd, S. "Advances in photonic quantum sensing". Nature Photonics. 12 (12): 724–733. 2018.
[19] Tan, Si-Hui; Erkmen, Baris I.; Giovannetti, Vittorio; Guha, Saikat; Lloyd, Seth; Maccone, Lorenzo; Pirandola, Stefano; Shapiro, Jeffrey H. "Quantum illumination with gaussian states". Physical Review Letters. 101 (25): 253601. 2008.
[20] H. Liu, B. Balaji and A. S. Helmy, "Target detection aided by quantum temporal correlations: theoretical analysis and experimental validation" in IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 5,. 3529-3544, 2020.
[21] Zhuang, Quntao, and Jeffrey H. Shapiro. "Ultimate accuracy limit of quantum pulse-compression ranging." Physical Review Letters 128.1: 010501. 2022.
[22] Lanzagorta, Marco. "Quantum radar." Synthesis Lectures on Quantum Computing 3.1 (2011): 1-139.
[23] Salmanogli, Ahmad, and Dincer Gokcen. "Entanglement sustainability improvement using optoelectronic converter in quantum radar (interferometric object-sensing)." IEEE Sensors Journal 21, no. 7 (2021): 9054-9062.
[24] Cai, Qizhi, Jinkun Liao, and Qiang Zhou. "Stationary entanglement between light and microwave via ferromagnetic magnons." Annalen der Physik 532, no. 12 (2020): 2000250.
[25] Grebel, J., et al. "Flux pumped impedance-engineered broadband Josephson parametric amplifier." Applied Physics Letters 118.14 (2021): 142601.
[26] Scully, M., & Zubairy, M. Quantum Optics. Cambridge: Cambridge University Press (1997). doi:10.1017/CBO978051-1813993.
[27] Nielsen, M. A., & Chuang, I. L. Quantum information and quantum computation.10th Anniversary Edition. Cambridge: Cambridge University Press. 2010.
[28] Zubairy, M. Suhail. "Quantum state measurement via Autler-Townes spectroscopy". Physics Letters A, Vol. 222, Issue. 1-2, p. 91. 1996.
[29] Nakahara, Mikio & Ohmi, Tetsuo. "Quantum computing rrom linear algebra to physical realizations". 10.1201/ 9781420012293. 2008.
[30] Barnett, Stephen, and Paul M. Radmore. Methods in theoretical quantum optics. Vol. 15. Oxford University Press, 2002.
[31] Luong, David, and Bhashyam Balaji. "Quantum two‐mode squeezing radar and noise radar: covariance matrices for signal processing." IET Radar, Sonar & Navigation 14.1 (2020): 97-104.
[32] Luong, David, Sreeraman Rajan, and Bhashyam Balaji. "Quantum two-mode squeezing radar and noise radar: Correlation coefficients for target detection." IEEE Sensors Journal 20.10 (2020): 5221-5228.
[33] Cai, Qizhi, et al. "Microwave quantum illumination via cavity magnonics." Physical Review A 103.5 (2021): 052419.
[34] Barzanjeh, Sh, Mehdi Abdi, Gerard J. Milburn, Paolo Tombesi, and David Vitali. "Reversible optical-to-microwave quantum interface." Physical Review Letters 109, no. 13 (2012): 130503.
[35] Barzanjeh, Shabir, E. S. Redchenko, Matilda Peruzzo, Matthias Wulf, D. P. Lewis, G. Arnold, and Johannes M. Fink. "Stationary entangled radiation from micromechanical motion", Nature 570, no. 7762 (2019): 480-483.
[36] Hosseiny, Seyed Mohammad, Milad Norouzi, Jamileh Seyed-Yazdi, and Mohammad Hossein Ghamat. "Engineered Josephson Parametric Amplifier in quantum two-modes squeezed radar." arXiv preprint arXiv:2205.06344 (2022).
[37] H. A. Boura, and A. Isar, Logarithmic negativity of two bosonic modes in the two thermal reservoir model. Rom. J. Phys. 60, 1278 (2015).
[38] A. Salmanogli, D. Gokcen, and H. S. Gecim, Entanglement of optical and microcavity modes by means of an optoelectronic system. Phys. Rev. Appl. 11, (2019)