Document Type : Research

Authors

1 Department of Physics, Faculty of science, Payame Noor University, Tehran, Iran

2 Department of Physics, Faculty of science, Vali-e-AsrUniversity, Rafsanjan, Iran.

Abstract

In this study, the structural, electronic and magnetic properties of new full Heusler alloys Ir2VZ (Z = Si, Ge, Sn) were studied using the Quantum Espresso software package based on density functional theory. Interchanging the positions of atoms, the calculations were performed for two hypothetical L21 and XA structures. The results showed that, the XA structure of alloys was non-magnetic, while the L21 structure of these alloys was ferrimagnetic. Based on investigation of structural properties of these alloys, it was found that the Ir2VSi alloy is more stable than the other two alloys due to its lowest cohesive energy. Also, the results of calculations on electronic properties show that Ir2VSi, Ir2VGe and Ir2VSn alloys are half-metall, quasi half-metall and metall at equilibrium lattice constants, respectively. Thus Ir2VSi alloy has 100% spin polarization around the Fermi level and its total magnetic moment (3µB/f.u.) exactly follows Slater-Pauling rule.

Keywords

[1] Felser C, Wollmann L, Chadov S, Fecher G.H., Parkin S.S.P. Basics and prospective of magnetic Heusler compounds. APL Mater. 2015 Apr 13; 3(4):041518.
[2] Bainsla L, Suresh K.G. Equiatomic quaternary Heusler alloys: a material perspective for spintronic applications. Appl. Phys. Rev. 2016 Sep 22; 3(3):031101.
 [3] Wang X, Cheng Z, Wang J, Wang X.L, Liu G. Recent advances in the Heusler based spin-gapless semiconductors. J. Mater. Chem. C. 2016 4(30):7176-92.
[4] Sanvito S, Oses C, Xue J, Tiwari A, Zic M, Archer T, Tozman P, Venkatesan M, Coey M, Curtarolo S. Accelerated discovery of new magnets in the Heusler alloy family. Sci. Adv. 2017 Apr 14; 3(4):e1602241.
[5] Tafti F.F, Fujii T, Juneau-Fecteau A, Rene de Cotret S, Doiron-Leyraud N, Asamitsu A, Taillefer L. Superconductivity in the noncentrosymmetric half-Heusler compound LuPtBi: a candidate for topological superconductivity. Phys. Rev. B. 2013 May 13; 87(18):184504.
[6] Ameri M, Touia A, Khenata R, Al Douri Y, Baltache H. Structural and optoelectronic properties of NiTiX and CoVX (X = Sb and Sn) half-Heusler compounds: an ab initio study. Optik. 2013 Apr 1; 124(7):570-4.
[7] Missoum A, Seddik T, Murtaza G, Khenata R, Bouhemadou A, Al-Douri Y, Abdiche A, Meradji H, Baltache H. Ab initio study of the structural and optoelectronic properties of the half-Heusler CoCrZ (Z=Al,Ga). Can. J. Phys. 2014 92(10):1105-12.
[8] Abderrahim B, Ameri M, Bensaid D, Azaz Y, Doumi B, Al-Douri Y, Benzoudji F. Half-metallic magnetism of quaternary Heusler compounds Co2FexMn1−xSi(x=0,0.5, and 1.0): first-principles calculations. J. Supercond. Novel Magn. 2016 Feb 29(2):277-83.
[9] Yahiaoui I.E, Lazreg A, Dridi Z, Al-Douri Y. Electronic and magnetic properties of Co2CrGa1−xSi x Heusler alloys, J. Supercond. Novel Magn. 2017 Feb 30(2):421-4.
[10] Amrich O, Amine Monir M.E, Baltach H, Omran S.B, Sun X.W, Wang X, Al-Douri Y, Bouhemadou A, Khenata R. Half-metallic ferrimagnetic characteristics of Co2YZ (Z = P, As, Sb, and Bi) new full-Heusler alloys: a DFT study, J. Super.Novel Magn. 2018 Jan 31(1):241-50.
[11] Rasool M.N, Hussain A, Javed A, Khan M.A, Iqbal F. Structural stability, electronic and magnetic behaviour of spin-polarized YCoVZ (Z= Si, Ge) and YCoTiZ (Z= Si, Ge) Heusler alloys. Mater. Chem. Phys. 2016 Nov 1; 183:524-33.
[12] Bainsla L, Suresh K.G, Nigam A.K, Manivel Raja M, Varaprasad B.S.D.Ch.S, Takahashi Y.K, Hono K. High spin polarization in CoFeMnGe equiatomic quaternary Heusler alloy. J. Appl. Phys. 2014 Nov 28; 116(20): 203902.
[13] Halder M, Mukadam M.D, Suresh K.G, Yusuf S.M. Electronic structural and magnetic properties of the quaternary Heusler alloy NiCoMnZ (Z ¼ Al, Ge, and Sn), J. Magn. Magn. Mater. 2015 Mar 1; 377:220-5.
[14] Bainsla L, Mallick A.I, Raja M.M, Nigam A.K, Varaprasad B.S.D.Ch.S, Takahashi Y.K, Alam A, Suresh K.G, Hono K. Spin gapless semiconducting behavior in equiatomic quaternary CoFeMnSi Heusler alloy, Phys. Rev. 2015 Mar 13; 91(10):104408.
[15] Kervan N, Kervan S. Half-metallic properties of Ti2FeSi full Heusler compound. J. Phys. Chem. Solids. 2011 Nov 1; 72(11):1358-61.
[16] Wen Z, Sukegawa H, Mitani S, Inomata K. Tunnel magnetoresistance in textured Co2FeAl/MgO/CoFe magnetic tunnel junctions on a Si/SiO2 amorphous substrate. Appl. Phys. Lett. 2011 May 9; 98(19):192505.
[17] Atulasimha J, Bandyopadhyay S. Nanomagnetic and 553 Spintronic Devices for Energy-Efficient Memory and Com- 554 putting. New York: Wiley. 2016 Mar 3–7.
[18] Huang W, Wang X, Chen X, Lu W, Damewood L, Fong C.Y. Structural and electronic properties of half-Heusler alloy PdMnBi calculated from first principles. Mater. Chem. Phys. 2014 Nov 14; 148(1-2):32-8.
[19] Amirabadizadeh A, Emami S.A, Nourbakhsh Z, Sadr S.M, Baizaee S.M. The effect of substitution of As for Ga on the topological phase and structural, electronic and magnetic properties of Mn2ZrGa Heusler alloy. J. Supercond. Novel Magn. 2017 Apr 30(4):1035-49.
[20] Behbahani M.A, Moradi M, Rostami M, Davatolhagh S. First principle study of structural, electronic and magnetic properties of half-Heusler IrCrZ (Z= Ge, As, sn and sb) compounds. J. Phys. Chem. Solids. 2016 May 1; 92:85-93.
[21] Jourdan M, Minár J, Braun J, Kronenberg A, Chadov S, Balke B, Gloskovskii A, Kolbe M, Elmers HJ, Schönhense G, Ebert H. Direct observation of half-metallicity in the Heusler compound Co2MnSi. Nature communications. 2014 May 30; 5(1):1-5.
[22] Amari S, Mebsout R, Mecabih S, Abbar B, Bouhafs B. First principle study of magnetic, elastic and thermal properties of full Heusler Co2MnSi. Intermetallics. 2014 Jan 1; 44:26-30.
[23] Chen J, Luo H, Jia P, Meng F, Liu G, Liu E, Wang W, Wu G. Site preference and electronic structure of Mn2RuSn: a theoretical study. J. Magn Magn Mater. 2014 Sep 1; 365:132-7.
[24] Kang X.H, Zhang J.M. The structural, electronic and magnetic properties of a novel quaternary Heusler alloy TiZrCoSn. J. Phys. Chem. Solids. 2017 Jun 1; 105:9-15.
[25] Liu B, Luo H, Xin Y, Zhang Y, Meng F, Liu H, Liu E, Wang W, Wu G. Unusual site preference of Cu in Ni2-based Heusler alloys Ni2CuSb and Ni2CuSn. Solid State Communications. 2015 Nov 1; 222:23-7.
[26] Zhang L, Gao Y.C. Electronic structures, magnetic properties and half-metallicity in the Heusler alloy Hf2VAl. Chine. J. phys. 2017 Aug 1; 55(4):1466-72.
[27] Rajabi K, Ahmadian F. Half-metallicity in new Heusler alloys NaTO2 (T= Sc, Ti, V, Cr, and Mn): A first-principles study. Solid State Communications. 2018 Mar 1; 271:29-38.
[28] Alavisadr S. M,  Dadigiv Z. The Study of the Electronic Structure and Magnetic Properties of Co2TaGa Heusler Compound. BiQuarterly Journal of Optoelectronic. 2021 2(9):19-26.
[29] Perdew J.P, Burke K, Ernzerhof M. Perdew, burke, and ernzerhof reply. Phys. Rev. Lett. 1998 Jan 26; 80(4):891.
[30] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B. 1990 Apr 15; 41(11):7892.
[31] Murnaghan F.D. The compressibility of media under extreme pressures Proc. Natl. Acad. Sci. U.S.A. 1944 Sep 15; 30(9):244-7.
[32] Amudhavalli A, Rajeswarapalanichamy R, Iyakutti K. Half metallic ferromagnetism in Ni based half Heusler alloys. Comput. Mater. Sci. 2018 Jun 1;148:87-103.
[33] Slater J.C. The ferromagnetism of nickel. Phys. Rev. 1936 Apr 1; 49(7):537.
[34] Pauling L. The nature of the interatomic forces in metals. Phys. Rev. 1938 Dec 1; 54(11):899.
[35] Galanakis I, Dederichs P. H, Papanikolaou N. Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B. 2002 Nov 18; 66(17):174429.